{"title":"有限幂零群的适当增强幂图","authors":"S. Bera, Hiranya Kishore Dey","doi":"10.1515/jgth-2022-0057","DOIUrl":null,"url":null,"abstract":"Abstract For a group 𝐺, the enhanced power graph of 𝐺 is a graph with vertex set 𝐺 in which two distinct vertices x , y x,y are adjacent if and only if there exists an element 𝑤 in 𝐺 such that both 𝑥 and 𝑦 are powers of 𝑤. The proper enhanced power graph is the induced subgraph of the enhanced power graph on the set G ∖ S G\\setminus S , where 𝑆 is the set of dominating vertices of the enhanced power graph. In this paper, we at first classify all nilpotent groups 𝐺 such that the proper enhanced power graphs are connected and calculate their diameter. We also explicitly calculate the domination number of the proper enhanced power graphs of finite nilpotent groups. Finally, we determine the multiplicity of the Laplacian spectral radius of the enhanced power graphs of nilpotent groups.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":"3 1","pages":"1109 - 1131"},"PeriodicalIF":0.4000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the proper enhanced power graphs of finite nilpotent groups\",\"authors\":\"S. Bera, Hiranya Kishore Dey\",\"doi\":\"10.1515/jgth-2022-0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a group 𝐺, the enhanced power graph of 𝐺 is a graph with vertex set 𝐺 in which two distinct vertices x , y x,y are adjacent if and only if there exists an element 𝑤 in 𝐺 such that both 𝑥 and 𝑦 are powers of 𝑤. The proper enhanced power graph is the induced subgraph of the enhanced power graph on the set G ∖ S G\\\\setminus S , where 𝑆 is the set of dominating vertices of the enhanced power graph. In this paper, we at first classify all nilpotent groups 𝐺 such that the proper enhanced power graphs are connected and calculate their diameter. We also explicitly calculate the domination number of the proper enhanced power graphs of finite nilpotent groups. Finally, we determine the multiplicity of the Laplacian spectral radius of the enhanced power graphs of nilpotent groups.\",\"PeriodicalId\":50188,\"journal\":{\"name\":\"Journal of Group Theory\",\"volume\":\"3 1\",\"pages\":\"1109 - 1131\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Group Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0057\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Group Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0057","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the proper enhanced power graphs of finite nilpotent groups
Abstract For a group 𝐺, the enhanced power graph of 𝐺 is a graph with vertex set 𝐺 in which two distinct vertices x , y x,y are adjacent if and only if there exists an element 𝑤 in 𝐺 such that both 𝑥 and 𝑦 are powers of 𝑤. The proper enhanced power graph is the induced subgraph of the enhanced power graph on the set G ∖ S G\setminus S , where 𝑆 is the set of dominating vertices of the enhanced power graph. In this paper, we at first classify all nilpotent groups 𝐺 such that the proper enhanced power graphs are connected and calculate their diameter. We also explicitly calculate the domination number of the proper enhanced power graphs of finite nilpotent groups. Finally, we determine the multiplicity of the Laplacian spectral radius of the enhanced power graphs of nilpotent groups.
期刊介绍:
The Journal of Group Theory is devoted to the publication of original research articles in all aspects of group theory. Articles concerning applications of group theory and articles from research areas which have a significant impact on group theory will also be considered.
Topics:
Group Theory-
Representation Theory of Groups-
Computational Aspects of Group Theory-
Combinatorics and Graph Theory-
Algebra and Number Theory