J. L. Risco-Martín, Segundo Esteban, Jesús Chacón, Gonzalo Carazo-Barbero, E. Besada-Portas, J. A. López-Orozco
{"title":"模拟驱动工程有害藻类和蓝藻华的管理","authors":"J. L. Risco-Martín, Segundo Esteban, Jesús Chacón, Gonzalo Carazo-Barbero, E. Besada-Portas, J. A. López-Orozco","doi":"10.1177/00375497231184246","DOIUrl":null,"url":null,"abstract":"Harmful algal and cyanobacterial blooms (HABs), occurring in inland and maritime waters, pose threats to natural environments by producing toxins that affect human and animal health. In the past, HABs have been assessed mainly by the manual collection and subsequent analysis of water samples and occasionally by automatic instruments that acquire information from fixed locations. These procedures do not provide data with the desirable spatial and temporal resolution to anticipate the formation of HABs. Hence, new tools and technologies are needed to efficiently detect, characterize and respond to HABs that threaten water quality. It is essential nowadays when the world’s water supply is under tremendous pressure because of climate change, overexploitation, and pollution. This paper introduces Discrete Event System Specification-BLOOM, a novel framework for real-time monitoring and management of HABs. Its purpose is to support high-performance hazard detection with model-based system engineering and cyber-physical systems infrastructure for dynamic environments.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"36 1","pages":"1041 - 1055"},"PeriodicalIF":1.3000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation-driven engineering for the management of harmful algal and cyanobacterial blooms\",\"authors\":\"J. L. Risco-Martín, Segundo Esteban, Jesús Chacón, Gonzalo Carazo-Barbero, E. Besada-Portas, J. A. López-Orozco\",\"doi\":\"10.1177/00375497231184246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harmful algal and cyanobacterial blooms (HABs), occurring in inland and maritime waters, pose threats to natural environments by producing toxins that affect human and animal health. In the past, HABs have been assessed mainly by the manual collection and subsequent analysis of water samples and occasionally by automatic instruments that acquire information from fixed locations. These procedures do not provide data with the desirable spatial and temporal resolution to anticipate the formation of HABs. Hence, new tools and technologies are needed to efficiently detect, characterize and respond to HABs that threaten water quality. It is essential nowadays when the world’s water supply is under tremendous pressure because of climate change, overexploitation, and pollution. This paper introduces Discrete Event System Specification-BLOOM, a novel framework for real-time monitoring and management of HABs. Its purpose is to support high-performance hazard detection with model-based system engineering and cyber-physical systems infrastructure for dynamic environments.\",\"PeriodicalId\":49516,\"journal\":{\"name\":\"Simulation-Transactions of the Society for Modeling and Simulation International\",\"volume\":\"36 1\",\"pages\":\"1041 - 1055\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation-Transactions of the Society for Modeling and Simulation International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/00375497231184246\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation-Transactions of the Society for Modeling and Simulation International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/00375497231184246","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Simulation-driven engineering for the management of harmful algal and cyanobacterial blooms
Harmful algal and cyanobacterial blooms (HABs), occurring in inland and maritime waters, pose threats to natural environments by producing toxins that affect human and animal health. In the past, HABs have been assessed mainly by the manual collection and subsequent analysis of water samples and occasionally by automatic instruments that acquire information from fixed locations. These procedures do not provide data with the desirable spatial and temporal resolution to anticipate the formation of HABs. Hence, new tools and technologies are needed to efficiently detect, characterize and respond to HABs that threaten water quality. It is essential nowadays when the world’s water supply is under tremendous pressure because of climate change, overexploitation, and pollution. This paper introduces Discrete Event System Specification-BLOOM, a novel framework for real-time monitoring and management of HABs. Its purpose is to support high-performance hazard detection with model-based system engineering and cyber-physical systems infrastructure for dynamic environments.
期刊介绍:
SIMULATION is a peer-reviewed journal, which covers subjects including the modelling and simulation of: computer networking and communications, high performance computers, real-time systems, mobile and intelligent agents, simulation software, and language design, system engineering and design, aerospace, traffic systems, microelectronics, robotics, mechatronics, and air traffic and chemistry, physics, biology, medicine, biomedicine, sociology, and cognition.