基于深度学习和机器学习的假警报检测

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shudong Li, Danyi Qin, Xiaobo Wu, Juan Li, Baohui Li, Weihong Han
{"title":"基于深度学习和机器学习的假警报检测","authors":"Shudong Li, Danyi Qin, Xiaobo Wu, Juan Li, Baohui Li, Weihong Han","doi":"10.4018/ijswis.297035","DOIUrl":null,"url":null,"abstract":"Among the large number of network attack alerts generated every day, actual security incidents are usually overwhelmed by a large number of redundant alerts. Therefore, how to remove these redundant alerts in real time and improve the quality of alerts is an urgent problem to be solved in large-scale network security protection. This paper uses the method of combining machine learning and deep learning to improve the effect of false alarm detection and then more accurately identify real alarms, that is, in the process of training the model, the features of a hidden layer output of the DNN model are used as input to train the machine learning model. In order to verify the proposed method, we use the marked alert data to do classification experiments, and finally use the accuracy recall rate, precision, and F1 value to evaluate the model. Good results have been obtained.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"23 1","pages":"1-21"},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"False Alert Detection Based on Deep Learning and Machine Learning\",\"authors\":\"Shudong Li, Danyi Qin, Xiaobo Wu, Juan Li, Baohui Li, Weihong Han\",\"doi\":\"10.4018/ijswis.297035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the large number of network attack alerts generated every day, actual security incidents are usually overwhelmed by a large number of redundant alerts. Therefore, how to remove these redundant alerts in real time and improve the quality of alerts is an urgent problem to be solved in large-scale network security protection. This paper uses the method of combining machine learning and deep learning to improve the effect of false alarm detection and then more accurately identify real alarms, that is, in the process of training the model, the features of a hidden layer output of the DNN model are used as input to train the machine learning model. In order to verify the proposed method, we use the marked alert data to do classification experiments, and finally use the accuracy recall rate, precision, and F1 value to evaluate the model. Good results have been obtained.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"23 1\",\"pages\":\"1-21\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.297035\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.297035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 19

摘要

在每天产生的大量网络攻击警报中,实际的安全事件往往被大量冗余警报所淹没。因此,如何实时清除这些冗余警报,提高警报质量,是大规模网络安全防护中亟待解决的问题。本文采用机器学习与深度学习相结合的方法来提高虚警检测的效果,进而更准确地识别真实报警,即在训练模型的过程中,将DNN模型的某一隐层输出的特征作为输入来训练机器学习模型。为了验证所提出的方法,我们使用标记的警报数据进行分类实验,最后使用准确率召回率、准确率和F1值对模型进行评价。取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
False Alert Detection Based on Deep Learning and Machine Learning
Among the large number of network attack alerts generated every day, actual security incidents are usually overwhelmed by a large number of redundant alerts. Therefore, how to remove these redundant alerts in real time and improve the quality of alerts is an urgent problem to be solved in large-scale network security protection. This paper uses the method of combining machine learning and deep learning to improve the effect of false alarm detection and then more accurately identify real alarms, that is, in the process of training the model, the features of a hidden layer output of the DNN model are used as input to train the machine learning model. In order to verify the proposed method, we use the marked alert data to do classification experiments, and finally use the accuracy recall rate, precision, and F1 value to evaluate the model. Good results have been obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信