基于特征选择和深度学习技术的VCN网络入侵检测系统

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
P. Keserwani, M. C. Govil, E. Pilli, Prajjval Govil
{"title":"基于特征选择和深度学习技术的VCN网络入侵检测系统","authors":"P. Keserwani, M. C. Govil, E. Pilli, Prajjval Govil","doi":"10.4018/IJDCF.20211101.OA10","DOIUrl":null,"url":null,"abstract":"In this modern era, due to demand for cloud environments in business, the size, complexity, and chance of attacks to virtual cloud network (VCN) are increased. The protection of VCN is required to maintain the faith of the cloud users. Intrusion detection is essential to secure any network. The existing approaches that use the conventional neural network cannot utilize all information for identifying the intrusions. In this paper, the anomaly-based NIDS for VCN is proposed. For feature selection, grey wolf optimization (GWO) is hybridized with a bald eagle search (BES) algorithm. For classification, a deep learning approach—deep sparse auto-encoder (DSAE)—is employed. In this way, this paper proposes a NIDS model for VCN named GWO-DES-DSAE. The proposed system is simulated in the python programming environment. The proposed NIDS model’s performance is compared with other recent approaches for both binary and multi-class classification on the considered datasets—NSL-KDD, UNSW-NB15, and CICIDS 2017—and found better than other methods. Deep Sparse Autoencoder (DSAE) has been utilized to learn the underlying traffic data structure. The proposed system improves performance and, hence producing reliable predictions. Evaluation of the results shows the quality and effectiveness of the proposed NIDS model, and the main contributions of this work are as follows:","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Optimal NIDS for VCN Using Feature Selection and Deep Learning Technique: IDS for VCN\",\"authors\":\"P. Keserwani, M. C. Govil, E. Pilli, Prajjval Govil\",\"doi\":\"10.4018/IJDCF.20211101.OA10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this modern era, due to demand for cloud environments in business, the size, complexity, and chance of attacks to virtual cloud network (VCN) are increased. The protection of VCN is required to maintain the faith of the cloud users. Intrusion detection is essential to secure any network. The existing approaches that use the conventional neural network cannot utilize all information for identifying the intrusions. In this paper, the anomaly-based NIDS for VCN is proposed. For feature selection, grey wolf optimization (GWO) is hybridized with a bald eagle search (BES) algorithm. For classification, a deep learning approach—deep sparse auto-encoder (DSAE)—is employed. In this way, this paper proposes a NIDS model for VCN named GWO-DES-DSAE. The proposed system is simulated in the python programming environment. The proposed NIDS model’s performance is compared with other recent approaches for both binary and multi-class classification on the considered datasets—NSL-KDD, UNSW-NB15, and CICIDS 2017—and found better than other methods. Deep Sparse Autoencoder (DSAE) has been utilized to learn the underlying traffic data structure. The proposed system improves performance and, hence producing reliable predictions. Evaluation of the results shows the quality and effectiveness of the proposed NIDS model, and the main contributions of this work are as follows:\",\"PeriodicalId\":44650,\"journal\":{\"name\":\"International Journal of Digital Crime and Forensics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Digital Crime and Forensics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJDCF.20211101.OA10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDCF.20211101.OA10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

在当今时代,由于业务对云环境的需求,对虚拟云网络(VCN)的攻击的规模、复杂性和机会都在增加。VCN的保护是维护云用户信任的必要条件。入侵检测对于任何网络的安全都是必不可少的。现有的基于传统神经网络的入侵识别方法无法利用所有信息进行入侵识别。本文提出了一种基于异常的VCN网络入侵检测方法。在特征选择方面,将灰狼优化算法(GWO)与白头鹰搜索算法(BES)相结合。在分类方面,采用了深度学习方法——深度稀疏自编码器(deep sparse auto-encoder, DSAE)。在此基础上,本文提出了一种VCN网络入侵检测模型GWO-DES-DSAE。该系统在python编程环境下进行了仿真。在考虑的数据集(nsl - kdd, UNSW-NB15和CICIDS 2017)上,将所提出的NIDS模型的性能与其他最近的二元和多类分类方法进行了比较,发现比其他方法更好。利用深度稀疏自编码器(Deep Sparse Autoencoder, DSAE)学习底层交通数据结构。所提出的系统提高了性能,从而产生了可靠的预测。对结果的评价表明了所提出的NIDS模型的质量和有效性,本工作的主要贡献如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimal NIDS for VCN Using Feature Selection and Deep Learning Technique: IDS for VCN
In this modern era, due to demand for cloud environments in business, the size, complexity, and chance of attacks to virtual cloud network (VCN) are increased. The protection of VCN is required to maintain the faith of the cloud users. Intrusion detection is essential to secure any network. The existing approaches that use the conventional neural network cannot utilize all information for identifying the intrusions. In this paper, the anomaly-based NIDS for VCN is proposed. For feature selection, grey wolf optimization (GWO) is hybridized with a bald eagle search (BES) algorithm. For classification, a deep learning approach—deep sparse auto-encoder (DSAE)—is employed. In this way, this paper proposes a NIDS model for VCN named GWO-DES-DSAE. The proposed system is simulated in the python programming environment. The proposed NIDS model’s performance is compared with other recent approaches for both binary and multi-class classification on the considered datasets—NSL-KDD, UNSW-NB15, and CICIDS 2017—and found better than other methods. Deep Sparse Autoencoder (DSAE) has been utilized to learn the underlying traffic data structure. The proposed system improves performance and, hence producing reliable predictions. Evaluation of the results shows the quality and effectiveness of the proposed NIDS model, and the main contributions of this work are as follows:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信