不同类型消毒液对核酸去污活性的研究

V. V. Kuzin, N. V. Kolupaeva, E. Kuzina, Vasily Dmitrievich Potapov
{"title":"不同类型消毒液对核酸去污活性的研究","authors":"V. V. Kuzin, N. V. Kolupaeva, E. Kuzina, Vasily Dmitrievich Potapov","doi":"10.35411/2076-457x-2022-1-14-20","DOIUrl":null,"url":null,"abstract":"Contamination of laboratory surfaces with nucleic acids and their amplicons is one of the most important problems encountered in nucleic acid amplification methods due to the occurrence of unreliable results. The aim of this study was to select and determine effective regimens for the use of various active agents for decontamination in PCR laboratories. The ability of ethyl alcohol, alkyldimethylbenzylammonium chloride, N,N-bis(3-aminopropyl)dodecylamine, polyhexamethyleneguanidine hydrochloride, hydrogen peroxide, peracetic acid, chlorine dioxide, sodium hypochlorite and neutral anolyte to destroy or irreversibly modify DNA, preventing its subsequent amplification was studied. The decontamination activity was analyzed by simulating the surface contamination with both long (1500 bp) and short (94 bp) amplicons. Hydrogen peroxide 2?%, peracetic acid 0.24?%, dichloroisocyanuric acid 0.01?%, sodium hypochlorite 0.1?% and chlorine dioxide 0.01?% were shown to have decontaminating ability. Notably, dichloroisocyanuric acid decontaminated surfaces from DNA at a concentration 20 times lower than previously described, and sodium hypochlorite at half the concentration, and chlorine dioxide was also found to have decontaminating activity. The absence of decontaminating activity was observed in ethyl alcohol 70?%, alkyldimethylbenzylammonium chloride 2?%, N,N-bis(3-aminopropyl)dodecylamine 2?%, polyhexamethyleneguanidine hydrochloride 2?% and neutral anolyte 0,05?%. The results obtained allow expanding the list of disinfectants recommended for decontamination measures in laboratories using nucleic acid amplification methods in order to prevent contamination of nucleic acids and their amplicons. Keywords: PCR, DNA, amplicons, decontamination, disinfectants.","PeriodicalId":11317,"journal":{"name":"Disinfection affairs","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the decontaminating activity of different disinfectant classes against nucleic acids\",\"authors\":\"V. V. Kuzin, N. V. Kolupaeva, E. Kuzina, Vasily Dmitrievich Potapov\",\"doi\":\"10.35411/2076-457x-2022-1-14-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contamination of laboratory surfaces with nucleic acids and their amplicons is one of the most important problems encountered in nucleic acid amplification methods due to the occurrence of unreliable results. The aim of this study was to select and determine effective regimens for the use of various active agents for decontamination in PCR laboratories. The ability of ethyl alcohol, alkyldimethylbenzylammonium chloride, N,N-bis(3-aminopropyl)dodecylamine, polyhexamethyleneguanidine hydrochloride, hydrogen peroxide, peracetic acid, chlorine dioxide, sodium hypochlorite and neutral anolyte to destroy or irreversibly modify DNA, preventing its subsequent amplification was studied. The decontamination activity was analyzed by simulating the surface contamination with both long (1500 bp) and short (94 bp) amplicons. Hydrogen peroxide 2?%, peracetic acid 0.24?%, dichloroisocyanuric acid 0.01?%, sodium hypochlorite 0.1?% and chlorine dioxide 0.01?% were shown to have decontaminating ability. Notably, dichloroisocyanuric acid decontaminated surfaces from DNA at a concentration 20 times lower than previously described, and sodium hypochlorite at half the concentration, and chlorine dioxide was also found to have decontaminating activity. The absence of decontaminating activity was observed in ethyl alcohol 70?%, alkyldimethylbenzylammonium chloride 2?%, N,N-bis(3-aminopropyl)dodecylamine 2?%, polyhexamethyleneguanidine hydrochloride 2?% and neutral anolyte 0,05?%. The results obtained allow expanding the list of disinfectants recommended for decontamination measures in laboratories using nucleic acid amplification methods in order to prevent contamination of nucleic acids and their amplicons. Keywords: PCR, DNA, amplicons, decontamination, disinfectants.\",\"PeriodicalId\":11317,\"journal\":{\"name\":\"Disinfection affairs\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disinfection affairs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35411/2076-457x-2022-1-14-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disinfection affairs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35411/2076-457x-2022-1-14-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于核酸扩增结果不可靠,实验室表面被核酸及其扩增子污染是核酸扩增方法中遇到的最重要问题之一。本研究的目的是选择和确定在PCR实验室中使用各种活性剂去污的有效方案。研究了乙醇、烷基二甲基苄基氯化铵、N,N-二(3-氨基丙基)十二烷基胺、聚六亚甲基胍盐酸盐、过氧化氢、过氧乙酸、二氧化氯、次氯酸钠和中性阳极液破坏或不可逆修饰DNA的能力,从而阻止DNA的后续扩增。通过模拟长(1500 bp)和短(94 bp)的表面污染,分析了去污活性。过氧化氢?%,过氧乙酸0.24?%,二氯异氰尿酸0.01?%,次氯酸钠0.1?%和二氧化氯0.01?%被证明具有去污能力。值得注意的是,二氯异氰尿酸以比先前描述的低20倍的浓度净化DNA表面,次氯酸钠以一半的浓度净化,二氧化氯也被发现具有净化活性。在乙醇中观察到没有去污活性。%,烷基二甲基苄基氯化铵2?%, N,N-二(3-氨基丙基)十二烷基胺2?%,聚六亚甲基胍盐酸盐2?%和中性阳极液0.05%。所获得的结果允许扩大使用核酸扩增方法的实验室去污措施推荐的消毒剂清单,以防止核酸及其扩增子的污染。关键词:PCR, DNA,扩增子,去污,消毒剂
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of the decontaminating activity of different disinfectant classes against nucleic acids
Contamination of laboratory surfaces with nucleic acids and their amplicons is one of the most important problems encountered in nucleic acid amplification methods due to the occurrence of unreliable results. The aim of this study was to select and determine effective regimens for the use of various active agents for decontamination in PCR laboratories. The ability of ethyl alcohol, alkyldimethylbenzylammonium chloride, N,N-bis(3-aminopropyl)dodecylamine, polyhexamethyleneguanidine hydrochloride, hydrogen peroxide, peracetic acid, chlorine dioxide, sodium hypochlorite and neutral anolyte to destroy or irreversibly modify DNA, preventing its subsequent amplification was studied. The decontamination activity was analyzed by simulating the surface contamination with both long (1500 bp) and short (94 bp) amplicons. Hydrogen peroxide 2?%, peracetic acid 0.24?%, dichloroisocyanuric acid 0.01?%, sodium hypochlorite 0.1?% and chlorine dioxide 0.01?% were shown to have decontaminating ability. Notably, dichloroisocyanuric acid decontaminated surfaces from DNA at a concentration 20 times lower than previously described, and sodium hypochlorite at half the concentration, and chlorine dioxide was also found to have decontaminating activity. The absence of decontaminating activity was observed in ethyl alcohol 70?%, alkyldimethylbenzylammonium chloride 2?%, N,N-bis(3-aminopropyl)dodecylamine 2?%, polyhexamethyleneguanidine hydrochloride 2?% and neutral anolyte 0,05?%. The results obtained allow expanding the list of disinfectants recommended for decontamination measures in laboratories using nucleic acid amplification methods in order to prevent contamination of nucleic acids and their amplicons. Keywords: PCR, DNA, amplicons, decontamination, disinfectants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信