新的模拟退火算法

P.R.S. Mendonca, L. Calôba
{"title":"新的模拟退火算法","authors":"P.R.S. Mendonca, L. Calôba","doi":"10.1109/ISCAS.1997.621454","DOIUrl":null,"url":null,"abstract":"This paper introduces a new class of D-dimensional density probability functions to be used in Simulated Annealing algorithms and derives an appropriate cooling schedule that is proved to be inversely proportional to a previously chosen power n of time. This generates a new algorithm, the nFast Simulated Annealing (nFSA), from which the Fast Simulated Annealing (FSA) is a particular case. As will be shown, this new algorithm achieves results with an accuracy that increases with n, at the expense of an initial convergence speed that decreases with n. This drawback is solved by the use of an adaptive algorithm, the Adaptive nFast Simulated Annealing (AnFSA), where the parameter n starts at small value, producing a fast initial convergence, and is raised as the algorithm runs, finding global minima points quickly and with great accuracy.","PeriodicalId":68559,"journal":{"name":"电路与系统学报","volume":"36 6 1","pages":"1668-1671 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"New simulated annealing algorithms\",\"authors\":\"P.R.S. Mendonca, L. Calôba\",\"doi\":\"10.1109/ISCAS.1997.621454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new class of D-dimensional density probability functions to be used in Simulated Annealing algorithms and derives an appropriate cooling schedule that is proved to be inversely proportional to a previously chosen power n of time. This generates a new algorithm, the nFast Simulated Annealing (nFSA), from which the Fast Simulated Annealing (FSA) is a particular case. As will be shown, this new algorithm achieves results with an accuracy that increases with n, at the expense of an initial convergence speed that decreases with n. This drawback is solved by the use of an adaptive algorithm, the Adaptive nFast Simulated Annealing (AnFSA), where the parameter n starts at small value, producing a fast initial convergence, and is raised as the algorithm runs, finding global minima points quickly and with great accuracy.\",\"PeriodicalId\":68559,\"journal\":{\"name\":\"电路与系统学报\",\"volume\":\"36 6 1\",\"pages\":\"1668-1671 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电路与系统学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.1997.621454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ISCAS.1997.621454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文介绍了一类新的用于模拟退火算法的d维密度概率函数,并推导了一个适当的冷却计划,该计划被证明与先前选择的时间的n次方成反比。这产生了一个新的算法,nFast模拟退火(nFSA),其中快速模拟退火(FSA)是一个特殊的例子。如图所示,这种新算法以初始收敛速度随n而降低为代价,以达到精度随n而增加的结果。这个缺点通过使用自适应算法来解决,自适应nFast模拟退火(AnFSA),其中参数n从小值开始,产生快速的初始收敛,并随着算法运行而提高,快速且高精度地找到全局极小点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New simulated annealing algorithms
This paper introduces a new class of D-dimensional density probability functions to be used in Simulated Annealing algorithms and derives an appropriate cooling schedule that is proved to be inversely proportional to a previously chosen power n of time. This generates a new algorithm, the nFast Simulated Annealing (nFSA), from which the Fast Simulated Annealing (FSA) is a particular case. As will be shown, this new algorithm achieves results with an accuracy that increases with n, at the expense of an initial convergence speed that decreases with n. This drawback is solved by the use of an adaptive algorithm, the Adaptive nFast Simulated Annealing (AnFSA), where the parameter n starts at small value, producing a fast initial convergence, and is raised as the algorithm runs, finding global minima points quickly and with great accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2463
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信