A. Tyusenkov, A. R. Vafina, D. E. Bugai, A. Badikova, M. Tsadkin
{"title":"选用焊条以防止1.0402钢焊接接头的接触腐蚀","authors":"A. Tyusenkov, A. R. Vafina, D. E. Bugai, A. Badikova, M. Tsadkin","doi":"10.17122/ngdelo-2023-1-80-89","DOIUrl":null,"url":null,"abstract":"Welded structures operate, as a rule, under conditions of simultaneous exposure to aggressive media and workloads. Thus, when protecting the metal of welded joints from corrosion fatigue, a number of specific problems arise due to the heterogeneity of their structure, the presence of multilayer welds, physical and geometric stress concentrators, and the staged nature of the change in the fine structure of the metal during fatigue loading. The result is an accelerated destruction of the metal in the junction zones of various structural forms, which are unequally adapted to the action of fatigue stresses. This fully applies to such critical structures of the oil and gas industry as pipelines, tanks, gas holders, etc. The purpose of the research was to establish the features of corrosion of welded joints made by various brands of electrodes by analyzing the change in the value of the electrode potential of the metal, which reflects the level of free energy of the surface layers in dynamics. Laboratory samples of carbon steel 1.0402 were subjected to manual arc welding (OZL-6, LB-52, MP-3 electrodes) and semi-automatic welding (EMK 6D polished wire and E71T1 rutile flux-cored welding wire with rapidly crystallizing slag). Further, their microstructural analysis was carried out and the hardness of various sections of welded joints was determined. It has been established that samples welded by semi-automatic welding are less susceptible to corrosion damage, since the distribution of electrode potentials in the zones of the welded joint indicates their lower structural inhomogeneity. In this case, general uniform corrosion takes place. In addition, the use of EMK 6D and E71T1 welding wires ensures better mechanical properties of welded joints.","PeriodicalId":9748,"journal":{"name":"Chemical and Petroleum Engineering","volume":"156 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SELECTION OF A WELDING ELECTRODE TO PREVENT CONTACT CORROSION OF A STEEL 1.0402 WELD JOINT\",\"authors\":\"A. Tyusenkov, A. R. Vafina, D. E. Bugai, A. Badikova, M. Tsadkin\",\"doi\":\"10.17122/ngdelo-2023-1-80-89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Welded structures operate, as a rule, under conditions of simultaneous exposure to aggressive media and workloads. Thus, when protecting the metal of welded joints from corrosion fatigue, a number of specific problems arise due to the heterogeneity of their structure, the presence of multilayer welds, physical and geometric stress concentrators, and the staged nature of the change in the fine structure of the metal during fatigue loading. The result is an accelerated destruction of the metal in the junction zones of various structural forms, which are unequally adapted to the action of fatigue stresses. This fully applies to such critical structures of the oil and gas industry as pipelines, tanks, gas holders, etc. The purpose of the research was to establish the features of corrosion of welded joints made by various brands of electrodes by analyzing the change in the value of the electrode potential of the metal, which reflects the level of free energy of the surface layers in dynamics. Laboratory samples of carbon steel 1.0402 were subjected to manual arc welding (OZL-6, LB-52, MP-3 electrodes) and semi-automatic welding (EMK 6D polished wire and E71T1 rutile flux-cored welding wire with rapidly crystallizing slag). Further, their microstructural analysis was carried out and the hardness of various sections of welded joints was determined. It has been established that samples welded by semi-automatic welding are less susceptible to corrosion damage, since the distribution of electrode potentials in the zones of the welded joint indicates their lower structural inhomogeneity. In this case, general uniform corrosion takes place. In addition, the use of EMK 6D and E71T1 welding wires ensures better mechanical properties of welded joints.\",\"PeriodicalId\":9748,\"journal\":{\"name\":\"Chemical and Petroleum Engineering\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Petroleum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17122/ngdelo-2023-1-80-89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17122/ngdelo-2023-1-80-89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
SELECTION OF A WELDING ELECTRODE TO PREVENT CONTACT CORROSION OF A STEEL 1.0402 WELD JOINT
Welded structures operate, as a rule, under conditions of simultaneous exposure to aggressive media and workloads. Thus, when protecting the metal of welded joints from corrosion fatigue, a number of specific problems arise due to the heterogeneity of their structure, the presence of multilayer welds, physical and geometric stress concentrators, and the staged nature of the change in the fine structure of the metal during fatigue loading. The result is an accelerated destruction of the metal in the junction zones of various structural forms, which are unequally adapted to the action of fatigue stresses. This fully applies to such critical structures of the oil and gas industry as pipelines, tanks, gas holders, etc. The purpose of the research was to establish the features of corrosion of welded joints made by various brands of electrodes by analyzing the change in the value of the electrode potential of the metal, which reflects the level of free energy of the surface layers in dynamics. Laboratory samples of carbon steel 1.0402 were subjected to manual arc welding (OZL-6, LB-52, MP-3 electrodes) and semi-automatic welding (EMK 6D polished wire and E71T1 rutile flux-cored welding wire with rapidly crystallizing slag). Further, their microstructural analysis was carried out and the hardness of various sections of welded joints was determined. It has been established that samples welded by semi-automatic welding are less susceptible to corrosion damage, since the distribution of electrode potentials in the zones of the welded joint indicates their lower structural inhomogeneity. In this case, general uniform corrosion takes place. In addition, the use of EMK 6D and E71T1 welding wires ensures better mechanical properties of welded joints.
期刊介绍:
Chemical and Petroleum Engineering publishes the latest research on Russian innovations in the field. Articles discuss developments in machinery and equipment, construction and design, processes, materials and corrosion control, and equipment-manufacturing technology. Chemical and Petroleum Engineering is a translation of the Russian journal Khimicheskoe i Neftegazovoe Mashinostroenie. The Russian Volume Year is published in English from April. All articles are peer-reviewed.