{"title":"半群、单群和群的自由积中的乘法表和词双曲性","authors":"Carl-Fredrik Nyberg Brodda","doi":"10.1017/s1446788723000010","DOIUrl":null,"url":null,"abstract":"\n This article studies the properties of word-hyperbolic semigroups and monoids, that is, those having context-free multiplication tables with respect to a regular combing, as defined by Duncan and Gilman [‘Word hyperbolic semigroups’, Math. Proc. Cambridge Philos. Soc.136(3) (2004), 513–524]. In particular, the preservation of word-hyperbolicity under taking free products is considered. Under mild conditions on the semigroups involved, satisfied, for example, by monoids or regular semigroups, we prove that the semigroup free product of two word-hyperbolic semigroups is again word-hyperbolic. Analogously, with a mild condition on the uniqueness of representation for the identity element, satisfied, for example, by groups, we prove that the monoid free product of two word-hyperbolic monoids is word-hyperbolic. The methods are language-theoretically general, and apply equally well to semigroups, monoids or groups with a \n \n \n \n$\\mathbf {C}$\n\n \n -multiplication table, where \n \n \n \n$\\mathbf {C}$\n\n \n is any reversal-closed super-\n \n \n \n$\\operatorname {\\mathrm {AFL}}$\n\n \n . In particular, we deduce that the free product of two groups with \n \n \n \n$\\mathbf {ET0L}$\n\n \n with respect to indexed multiplication tables again has an \n \n \n \n$\\mathbf {ET0L}$\n\n \n with respect to an indexed multiplication table.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MULTIPLICATION TABLES AND WORD-HYPERBOLICITY IN FREE PRODUCTS OF SEMIGROUPS, MONOIDS AND GROUPS\",\"authors\":\"Carl-Fredrik Nyberg Brodda\",\"doi\":\"10.1017/s1446788723000010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article studies the properties of word-hyperbolic semigroups and monoids, that is, those having context-free multiplication tables with respect to a regular combing, as defined by Duncan and Gilman [‘Word hyperbolic semigroups’, Math. Proc. Cambridge Philos. Soc.136(3) (2004), 513–524]. In particular, the preservation of word-hyperbolicity under taking free products is considered. Under mild conditions on the semigroups involved, satisfied, for example, by monoids or regular semigroups, we prove that the semigroup free product of two word-hyperbolic semigroups is again word-hyperbolic. Analogously, with a mild condition on the uniqueness of representation for the identity element, satisfied, for example, by groups, we prove that the monoid free product of two word-hyperbolic monoids is word-hyperbolic. The methods are language-theoretically general, and apply equally well to semigroups, monoids or groups with a \\n \\n \\n \\n$\\\\mathbf {C}$\\n\\n \\n -multiplication table, where \\n \\n \\n \\n$\\\\mathbf {C}$\\n\\n \\n is any reversal-closed super-\\n \\n \\n \\n$\\\\operatorname {\\\\mathrm {AFL}}$\\n\\n \\n . In particular, we deduce that the free product of two groups with \\n \\n \\n \\n$\\\\mathbf {ET0L}$\\n\\n \\n with respect to indexed multiplication tables again has an \\n \\n \\n \\n$\\\\mathbf {ET0L}$\\n\\n \\n with respect to an indexed multiplication table.\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1446788723000010\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788723000010","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
MULTIPLICATION TABLES AND WORD-HYPERBOLICITY IN FREE PRODUCTS OF SEMIGROUPS, MONOIDS AND GROUPS
This article studies the properties of word-hyperbolic semigroups and monoids, that is, those having context-free multiplication tables with respect to a regular combing, as defined by Duncan and Gilman [‘Word hyperbolic semigroups’, Math. Proc. Cambridge Philos. Soc.136(3) (2004), 513–524]. In particular, the preservation of word-hyperbolicity under taking free products is considered. Under mild conditions on the semigroups involved, satisfied, for example, by monoids or regular semigroups, we prove that the semigroup free product of two word-hyperbolic semigroups is again word-hyperbolic. Analogously, with a mild condition on the uniqueness of representation for the identity element, satisfied, for example, by groups, we prove that the monoid free product of two word-hyperbolic monoids is word-hyperbolic. The methods are language-theoretically general, and apply equally well to semigroups, monoids or groups with a
$\mathbf {C}$
-multiplication table, where
$\mathbf {C}$
is any reversal-closed super-
$\operatorname {\mathrm {AFL}}$
. In particular, we deduce that the free product of two groups with
$\mathbf {ET0L}$
with respect to indexed multiplication tables again has an
$\mathbf {ET0L}$
with respect to an indexed multiplication table.
期刊介绍:
The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred.
Published Bi-monthly
Published for the Australian Mathematical Society