{"title":"基于伪自旋mosfet的新型非易失SRAM单元的静态噪声裕度和功率门控效率分析","authors":"Y. Shuto, S. Yamamoto, S. Sugahara","doi":"10.1109/SNW.2012.6243330","DOIUrl":null,"url":null,"abstract":"Static noise margins (SNMs) and power-gating efficiency were computationally analyzed for our proposed nonvolatile SRAM (NV-SRAM) cell based on pseudo-spin-MOSFET (PS-MOSFET) architecture using spin-transfer-torque MTJs (STT-MTJs). The NV-SRAM cell has the same SNMs as an optimized 6T-SRAM cell. SNMs for other recently-proposed NV-SRAM cells using STT-MTJs were also evaluated, and we showed that their SNMs were deteriorated owing to the effect of the constituent STT-MTJs. Break-even time (BET) and power efficiency were analyzed for the NV-SRAM cell using PS-MOSFETs. The BET can be successfully minimized by controlling the bias of the cell. The average power dissipation can be effectively reduced by power-gating (PG) executions, and the further reduction is made possible by introducing a sleep mode.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"22 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Analysis of static noise margin and power-gating efficiency of a new nonvolatile SRAM cell using pseudo-spin-MOSFETs\",\"authors\":\"Y. Shuto, S. Yamamoto, S. Sugahara\",\"doi\":\"10.1109/SNW.2012.6243330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static noise margins (SNMs) and power-gating efficiency were computationally analyzed for our proposed nonvolatile SRAM (NV-SRAM) cell based on pseudo-spin-MOSFET (PS-MOSFET) architecture using spin-transfer-torque MTJs (STT-MTJs). The NV-SRAM cell has the same SNMs as an optimized 6T-SRAM cell. SNMs for other recently-proposed NV-SRAM cells using STT-MTJs were also evaluated, and we showed that their SNMs were deteriorated owing to the effect of the constituent STT-MTJs. Break-even time (BET) and power efficiency were analyzed for the NV-SRAM cell using PS-MOSFETs. The BET can be successfully minimized by controlling the bias of the cell. The average power dissipation can be effectively reduced by power-gating (PG) executions, and the further reduction is made possible by introducing a sleep mode.\",\"PeriodicalId\":6402,\"journal\":{\"name\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"22 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNW.2012.6243330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of static noise margin and power-gating efficiency of a new nonvolatile SRAM cell using pseudo-spin-MOSFETs
Static noise margins (SNMs) and power-gating efficiency were computationally analyzed for our proposed nonvolatile SRAM (NV-SRAM) cell based on pseudo-spin-MOSFET (PS-MOSFET) architecture using spin-transfer-torque MTJs (STT-MTJs). The NV-SRAM cell has the same SNMs as an optimized 6T-SRAM cell. SNMs for other recently-proposed NV-SRAM cells using STT-MTJs were also evaluated, and we showed that their SNMs were deteriorated owing to the effect of the constituent STT-MTJs. Break-even time (BET) and power efficiency were analyzed for the NV-SRAM cell using PS-MOSFETs. The BET can be successfully minimized by controlling the bias of the cell. The average power dissipation can be effectively reduced by power-gating (PG) executions, and the further reduction is made possible by introducing a sleep mode.