具有方向延迟的二维奇异Roesser系统的有限区域稳定性

Huy Vu Le, A. Le
{"title":"具有方向延迟的二维奇异Roesser系统的有限区域稳定性","authors":"Huy Vu Le, A. Le","doi":"10.26459/hueunijns.v130i1d.6283","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of finite-region stability is studied for a class of two-dimensional (2-D) singular systems described by using the Roesser model with directional delays. Based on the regularity, we first decompose the underlying singular 2-D systems into fast and slow subsystems corresponding to dynamic and algebraic parts. Then, with the Lyapunov-like 2-D functional method, we construct a weighted 2-D functional candidate and utilize zero-type free matrix equations to derive delay-dependent stability conditions in terms of linear matrix inequalities (LMIs). More specifically, the derived conditions ensure that all state trajectories of the system do not exceed a prescribed threshold over a pre-specified finite region of time for any initial state sequences when energy-norms of dynamic parts do not exceed given bounds.","PeriodicalId":13004,"journal":{"name":"Hue University Journal of Science: Natural Science","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-region stability of 2-D singular Roesser systems with directional delays\",\"authors\":\"Huy Vu Le, A. Le\",\"doi\":\"10.26459/hueunijns.v130i1d.6283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of finite-region stability is studied for a class of two-dimensional (2-D) singular systems described by using the Roesser model with directional delays. Based on the regularity, we first decompose the underlying singular 2-D systems into fast and slow subsystems corresponding to dynamic and algebraic parts. Then, with the Lyapunov-like 2-D functional method, we construct a weighted 2-D functional candidate and utilize zero-type free matrix equations to derive delay-dependent stability conditions in terms of linear matrix inequalities (LMIs). More specifically, the derived conditions ensure that all state trajectories of the system do not exceed a prescribed threshold over a pre-specified finite region of time for any initial state sequences when energy-norms of dynamic parts do not exceed given bounds.\",\"PeriodicalId\":13004,\"journal\":{\"name\":\"Hue University Journal of Science: Natural Science\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hue University Journal of Science: Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26459/hueunijns.v130i1d.6283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hue University Journal of Science: Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26459/hueunijns.v130i1d.6283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类用Roesser模型描述的二维(2-D)奇异系统的有限区域稳定性问题。基于这种规律性,我们首先将底层奇异二维系统分解为对应于动态部分和代数部分的快、慢子系统。然后,利用类lyapunov二维泛函方法,构造了一个加权的二维泛函候点,并利用零型自由矩阵方程导出了线性矩阵不等式(lmi)的时滞相关稳定性条件。更具体地说,导出的条件确保系统的所有状态轨迹在预先指定的有限时间范围内,对于任何初始状态序列,当动态部分的能量范数不超过给定界限时,不超过规定的阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-region stability of 2-D singular Roesser systems with directional delays
In this paper, the problem of finite-region stability is studied for a class of two-dimensional (2-D) singular systems described by using the Roesser model with directional delays. Based on the regularity, we first decompose the underlying singular 2-D systems into fast and slow subsystems corresponding to dynamic and algebraic parts. Then, with the Lyapunov-like 2-D functional method, we construct a weighted 2-D functional candidate and utilize zero-type free matrix equations to derive delay-dependent stability conditions in terms of linear matrix inequalities (LMIs). More specifically, the derived conditions ensure that all state trajectories of the system do not exceed a prescribed threshold over a pre-specified finite region of time for any initial state sequences when energy-norms of dynamic parts do not exceed given bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信