线性时变观测系统的静止轨道

A. Astrovskii
{"title":"线性时变观测系统的静止轨道","authors":"A. Astrovskii","doi":"10.29235/1561-8323-2021-65-1-18-24","DOIUrl":null,"url":null,"abstract":"In terms of matrix observability, the necessary and sufficient conditions are obtained for the linear timevarying observation system to have stationary orbits with respect to the linear time-varying transformation group of class C1 . The full invariant of the action of a transformation group is described. It is proved that for any matrix function A c C(T, Rn×n ), there exists such an n-vector function c(t), t c T, that the pair (A, c) is uniformly observable. The algorithm for constructing a stationary system is described.","PeriodicalId":11283,"journal":{"name":"Doklady of the National Academy of Sciences of Belarus","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationary orbits of linear time-varying observation systems\",\"authors\":\"A. Astrovskii\",\"doi\":\"10.29235/1561-8323-2021-65-1-18-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In terms of matrix observability, the necessary and sufficient conditions are obtained for the linear timevarying observation system to have stationary orbits with respect to the linear time-varying transformation group of class C1 . The full invariant of the action of a transformation group is described. It is proved that for any matrix function A c C(T, Rn×n ), there exists such an n-vector function c(t), t c T, that the pair (A, c) is uniformly observable. The algorithm for constructing a stationary system is described.\",\"PeriodicalId\":11283,\"journal\":{\"name\":\"Doklady of the National Academy of Sciences of Belarus\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady of the National Academy of Sciences of Belarus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2021-65-1-18-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady of the National Academy of Sciences of Belarus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2021-65-1-18-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在矩阵可观测性方面,得到了线性时变观测系统相对于C1类线性时变变换群具有平稳轨道的充分必要条件。描述了变换群作用的完全不变量。证明了对于任意矩阵函数A c c(T, Rn×n),存在这样一个n向量函数c(T), T c T,使得(A, c)对是一致可观察的。描述了构造平稳系统的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stationary orbits of linear time-varying observation systems
In terms of matrix observability, the necessary and sufficient conditions are obtained for the linear timevarying observation system to have stationary orbits with respect to the linear time-varying transformation group of class C1 . The full invariant of the action of a transformation group is described. It is proved that for any matrix function A c C(T, Rn×n ), there exists such an n-vector function c(t), t c T, that the pair (A, c) is uniformly observable. The algorithm for constructing a stationary system is described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信