从非结构化演示中学习和概括复杂任务

S. Niekum, Sarah Osentoski, G. Konidaris, A. Barto
{"title":"从非结构化演示中学习和概括复杂任务","authors":"S. Niekum, Sarah Osentoski, G. Konidaris, A. Barto","doi":"10.1109/IROS.2012.6386006","DOIUrl":null,"url":null,"abstract":"We present a novel method for segmenting demonstrations, recognizing repeated skills, and generalizing complex tasks from unstructured demonstrations. This method combines many of the advantages of recent automatic segmentation methods for learning from demonstration into a single principled, integrated framework. Specifically, we use the Beta Process Autoregressive Hidden Markov Model and Dynamic Movement Primitives to learn and generalize a multi-step task on the PR2 mobile manipulator and to demonstrate the potential of our framework to learn a large library of skills over time.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"79 1","pages":"5239-5246"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"183","resultStr":"{\"title\":\"Learning and generalization of complex tasks from unstructured demonstrations\",\"authors\":\"S. Niekum, Sarah Osentoski, G. Konidaris, A. Barto\",\"doi\":\"10.1109/IROS.2012.6386006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel method for segmenting demonstrations, recognizing repeated skills, and generalizing complex tasks from unstructured demonstrations. This method combines many of the advantages of recent automatic segmentation methods for learning from demonstration into a single principled, integrated framework. Specifically, we use the Beta Process Autoregressive Hidden Markov Model and Dynamic Movement Primitives to learn and generalize a multi-step task on the PR2 mobile manipulator and to demonstrate the potential of our framework to learn a large library of skills over time.\",\"PeriodicalId\":6358,\"journal\":{\"name\":\"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"79 1\",\"pages\":\"5239-5246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"183\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2012.6386006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6386006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 183

摘要

我们提出了一种新的方法来分割演示,识别重复的技能,并从非结构化演示中概括复杂的任务。该方法结合了最近用于从演示中学习的自动分割方法的许多优点,将其集成到一个有原则的框架中。具体来说,我们使用Beta过程自回归隐马尔可夫模型和动态运动原语来学习和推广PR2移动机械臂上的多步骤任务,并展示了我们的框架随着时间的推移学习大量技能库的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning and generalization of complex tasks from unstructured demonstrations
We present a novel method for segmenting demonstrations, recognizing repeated skills, and generalizing complex tasks from unstructured demonstrations. This method combines many of the advantages of recent automatic segmentation methods for learning from demonstration into a single principled, integrated framework. Specifically, we use the Beta Process Autoregressive Hidden Markov Model and Dynamic Movement Primitives to learn and generalize a multi-step task on the PR2 mobile manipulator and to demonstrate the potential of our framework to learn a large library of skills over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信