鲁棒低重叠三维点云配准的异常值抑制

J. Stechschulte, N. Ahmed, C. Heckman
{"title":"鲁棒低重叠三维点云配准的异常值抑制","authors":"J. Stechschulte, N. Ahmed, C. Heckman","doi":"10.1109/ICRA.2019.8793857","DOIUrl":null,"url":null,"abstract":"When registering 3-D point clouds it is expected that some points in one cloud do not have corresponding points in the other cloud. These non-correspondences are likely to occur near one another, as surface regions visible from one sensor pose are obscured or out of frame for another. In this work, a hidden Markov random field model is used to capture this prior within the framework of the iterative closest point algorithm. The EM algorithm is used to estimate the distribution parameters and learn the hidden component memberships. Experiments are presented demonstrating that this method outperforms several other outlier rejection methods when the point clouds have low or moderate overlap.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"27 1","pages":"7143-7149"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Robust low-overlap 3-D point cloud registration for outlier rejection\",\"authors\":\"J. Stechschulte, N. Ahmed, C. Heckman\",\"doi\":\"10.1109/ICRA.2019.8793857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When registering 3-D point clouds it is expected that some points in one cloud do not have corresponding points in the other cloud. These non-correspondences are likely to occur near one another, as surface regions visible from one sensor pose are obscured or out of frame for another. In this work, a hidden Markov random field model is used to capture this prior within the framework of the iterative closest point algorithm. The EM algorithm is used to estimate the distribution parameters and learn the hidden component memberships. Experiments are presented demonstrating that this method outperforms several other outlier rejection methods when the point clouds have low or moderate overlap.\",\"PeriodicalId\":6730,\"journal\":{\"name\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"27 1\",\"pages\":\"7143-7149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2019.8793857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8793857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在配准三维点云时,期望一个云中的一些点在另一个云中没有相应的点。这些不对应很可能发生在彼此附近,因为从一个传感器姿态可见的表面区域被遮挡或超出了另一个传感器的帧。在这项工作中,使用隐马尔可夫随机场模型在迭代最近点算法的框架内捕获该先验。利用EM算法估计分布参数,学习隐藏分量的隶属度。实验结果表明,当点云具有低重叠或中等重叠时,该方法优于其他几种离群值抑制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust low-overlap 3-D point cloud registration for outlier rejection
When registering 3-D point clouds it is expected that some points in one cloud do not have corresponding points in the other cloud. These non-correspondences are likely to occur near one another, as surface regions visible from one sensor pose are obscured or out of frame for another. In this work, a hidden Markov random field model is used to capture this prior within the framework of the iterative closest point algorithm. The EM algorithm is used to estimate the distribution parameters and learn the hidden component memberships. Experiments are presented demonstrating that this method outperforms several other outlier rejection methods when the point clouds have low or moderate overlap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信