锡银凸点倒装芯片用非导电薄膜的固化性能和粘度研究

Hanmin Lee, Seyong Lee, Jongho Park, C. Chung, Kyung-Woon Jang, I. Kim, Seo-Yoon Choi, K. Paik
{"title":"锡银凸点倒装芯片用非导电薄膜的固化性能和粘度研究","authors":"Hanmin Lee, Seyong Lee, Jongho Park, C. Chung, Kyung-Woon Jang, I. Kim, Seo-Yoon Choi, K. Paik","doi":"10.1109/ECTC.2018.00371","DOIUrl":null,"url":null,"abstract":"In this study, flip chip assembly using NCFs was evaluated in Sn-Ag solder bump structure. Thermo-Compression (TC) flip chip bonding was performed within 5 seconds using an isothermal TC bonding method. Solder joint morphology was evaluated by adjusting curing properties of NCFs such as curing onset and peak temperature and degree of curing and also viscosities, and the best NCFs properties were optimized. In addition, bonding process conditions were also optimized in terms of solder gap heights and daisy chain electrical resistances. Finally, 85°C/85RH% test and temperature cycling (T/C) reliability test were performed to evaluate the thermo-mechanical and hygroscopic reliability performance of solder joint using NCFs.","PeriodicalId":6555,"journal":{"name":"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)","volume":"25 1","pages":"2464-2469"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Study on the Curing Properties and Viscosities of Non-Conductive Films (NCFs) for Sn-Ag Solder Bump Flip Chip Assembly\",\"authors\":\"Hanmin Lee, Seyong Lee, Jongho Park, C. Chung, Kyung-Woon Jang, I. Kim, Seo-Yoon Choi, K. Paik\",\"doi\":\"10.1109/ECTC.2018.00371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, flip chip assembly using NCFs was evaluated in Sn-Ag solder bump structure. Thermo-Compression (TC) flip chip bonding was performed within 5 seconds using an isothermal TC bonding method. Solder joint morphology was evaluated by adjusting curing properties of NCFs such as curing onset and peak temperature and degree of curing and also viscosities, and the best NCFs properties were optimized. In addition, bonding process conditions were also optimized in terms of solder gap heights and daisy chain electrical resistances. Finally, 85°C/85RH% test and temperature cycling (T/C) reliability test were performed to evaluate the thermo-mechanical and hygroscopic reliability performance of solder joint using NCFs.\",\"PeriodicalId\":6555,\"journal\":{\"name\":\"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"25 1\",\"pages\":\"2464-2469\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2018.00371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2018.00371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本研究中,我们评估了nfc在锡银凸点结构下的倒装芯片组装。采用等温热压缩(TC)键合方法在5秒内完成热压缩(TC)倒装芯片键合。通过调整nfc的固化起始温度、峰值温度、固化程度和粘度等特性,对焊点形貌进行了评价,并优化了nfc的最佳性能。此外,还从焊隙高度和菊花链电阻两个方面对焊接工艺条件进行了优化。最后,通过85°C/85 rh %试验和温度循环(T/C)可靠性试验,对nfc焊点的热力学和吸湿可靠性性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on the Curing Properties and Viscosities of Non-Conductive Films (NCFs) for Sn-Ag Solder Bump Flip Chip Assembly
In this study, flip chip assembly using NCFs was evaluated in Sn-Ag solder bump structure. Thermo-Compression (TC) flip chip bonding was performed within 5 seconds using an isothermal TC bonding method. Solder joint morphology was evaluated by adjusting curing properties of NCFs such as curing onset and peak temperature and degree of curing and also viscosities, and the best NCFs properties were optimized. In addition, bonding process conditions were also optimized in terms of solder gap heights and daisy chain electrical resistances. Finally, 85°C/85RH% test and temperature cycling (T/C) reliability test were performed to evaluate the thermo-mechanical and hygroscopic reliability performance of solder joint using NCFs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信