串联1700V SiC MOSFET器件的性能评价

K. Vechalapu, S. Bhattacharya, Eddy Aleoiza
{"title":"串联1700V SiC MOSFET器件的性能评价","authors":"K. Vechalapu, S. Bhattacharya, Eddy Aleoiza","doi":"10.1109/WIPDA.2015.7369327","DOIUrl":null,"url":null,"abstract":"The low voltage SiC (Silicon carbide) MOSFET (1.2 kV to 1.7 kV) increases the switching frequency limits of a power electronic converter several folds compared to low voltage Si IGBTs. Significant increase in efficiency and power density of voltage source converters can be achieved. However, for medium-voltage high-power converter applications Silicon (Si) devices (4.5 kV and 6.5 kV IGBT) are still dominant. To explore the capability of low voltage SiC devices for medium or high voltage applications, series connection of 1.7 kV/300 A SiC MOSFET modules has been investigated in this paper. A simple RC snubber method has been used for dynamic voltage sharing to offset the turn-off delays due to mismatch on device's characteristics and/or gate signals. Experimental switching characterization with different values of RC snubbers have been carried out to find the optimal RC snubber which gives minimum voltage sharing difference, snubber losses and total semiconductor losses. This paper also intends to show an optimization of the RC snubber for series connection of a limited number of 1.7kV SiC MOSFETs for 6 kV dc bus and for a generalized dc bus voltage.","PeriodicalId":6538,"journal":{"name":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"61 1","pages":"184-191"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Performance evaluation of series connected 1700V SiC MOSFET devices\",\"authors\":\"K. Vechalapu, S. Bhattacharya, Eddy Aleoiza\",\"doi\":\"10.1109/WIPDA.2015.7369327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The low voltage SiC (Silicon carbide) MOSFET (1.2 kV to 1.7 kV) increases the switching frequency limits of a power electronic converter several folds compared to low voltage Si IGBTs. Significant increase in efficiency and power density of voltage source converters can be achieved. However, for medium-voltage high-power converter applications Silicon (Si) devices (4.5 kV and 6.5 kV IGBT) are still dominant. To explore the capability of low voltage SiC devices for medium or high voltage applications, series connection of 1.7 kV/300 A SiC MOSFET modules has been investigated in this paper. A simple RC snubber method has been used for dynamic voltage sharing to offset the turn-off delays due to mismatch on device's characteristics and/or gate signals. Experimental switching characterization with different values of RC snubbers have been carried out to find the optimal RC snubber which gives minimum voltage sharing difference, snubber losses and total semiconductor losses. This paper also intends to show an optimization of the RC snubber for series connection of a limited number of 1.7kV SiC MOSFETs for 6 kV dc bus and for a generalized dc bus voltage.\",\"PeriodicalId\":6538,\"journal\":{\"name\":\"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"volume\":\"61 1\",\"pages\":\"184-191\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2015.7369327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2015.7369327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

与低压Si igbt相比,低压SiC(碳化硅)MOSFET (1.2 kV至1.7 kV)将电力电子转换器的开关频率限制提高了几倍。可以显著提高电压源变换器的效率和功率密度。然而,对于中压高功率转换器应用,硅(Si)器件(4.5 kV和6.5 kV IGBT)仍然占主导地位。为了探索低电压SiC器件在中高压应用中的能力,本文研究了1.7 kV/300 A SiC MOSFET模块的串联连接。一个简单的RC缓冲方法已经被用于动态电压共享,以抵消由于器件特性和/或门信号不匹配而导致的关断延迟。为了找到电压分担差、缓冲器损耗和总半导体损耗最小的最佳缓冲器,对不同缓冲器的开关特性进行了实验研究。本文还打算展示一种优化的RC缓冲器,用于串联数量有限的1.7kV SiC mosfet,用于6 kV直流母线和广义直流母线电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation of series connected 1700V SiC MOSFET devices
The low voltage SiC (Silicon carbide) MOSFET (1.2 kV to 1.7 kV) increases the switching frequency limits of a power electronic converter several folds compared to low voltage Si IGBTs. Significant increase in efficiency and power density of voltage source converters can be achieved. However, for medium-voltage high-power converter applications Silicon (Si) devices (4.5 kV and 6.5 kV IGBT) are still dominant. To explore the capability of low voltage SiC devices for medium or high voltage applications, series connection of 1.7 kV/300 A SiC MOSFET modules has been investigated in this paper. A simple RC snubber method has been used for dynamic voltage sharing to offset the turn-off delays due to mismatch on device's characteristics and/or gate signals. Experimental switching characterization with different values of RC snubbers have been carried out to find the optimal RC snubber which gives minimum voltage sharing difference, snubber losses and total semiconductor losses. This paper also intends to show an optimization of the RC snubber for series connection of a limited number of 1.7kV SiC MOSFETs for 6 kV dc bus and for a generalized dc bus voltage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信