H. Xiong, Wenyong Wang, Qiliang Li, C. Richter, J. Suehle, Woong-Ki Hong, Takhee Lee, D. Fleetwood
{"title":"ZnO纳米线场效应晶体管中的随机电报信号和1/f噪声","authors":"H. Xiong, Wenyong Wang, Qiliang Li, C. Richter, J. Suehle, Woong-Ki Hong, Takhee Lee, D. Fleetwood","doi":"10.1109/NANO.2007.4601384","DOIUrl":null,"url":null,"abstract":"Single-crystal ZnO nanowires have been fabricated as field effect transistors (FETs). The low frequency noise in the drain current of n-type ZnO FETs has been investigated through random telegraph signals (RTSs) at 4.2 K and 1/f noise at room temperature. At room temperature, the noise power spectra have a classic 1/f dependence with a Hooge parameter that is ~ 5 times 10-3. ZnO FETs measured in a dry O2 - environment displayed elevated noise levels that can be attributed to increased fluctuations associated with O2 - on the nanowire surfaces. At 4.2 K, the deviceiquests noise spectra change from 1/f to Lorentzian type, and the current traces as a function of time show random telegraph signals (RTSs). The channel current RTSs are attributed to correlated carrier number and mobility fluctuation due to the trapping and emission of carriers by discrete border traps. At certain bias conditions, the current in the channel shows three-level switching events with amplitudes as high as 40 %, from which two individual defects with energies close to the Fermi level in the ZnO channel can be distinguished.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"45 1","pages":"1139-1143"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Telegraph Signals and 1/f Noise in ZnO Nanowire Field Effect Transistors\",\"authors\":\"H. Xiong, Wenyong Wang, Qiliang Li, C. Richter, J. Suehle, Woong-Ki Hong, Takhee Lee, D. Fleetwood\",\"doi\":\"10.1109/NANO.2007.4601384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-crystal ZnO nanowires have been fabricated as field effect transistors (FETs). The low frequency noise in the drain current of n-type ZnO FETs has been investigated through random telegraph signals (RTSs) at 4.2 K and 1/f noise at room temperature. At room temperature, the noise power spectra have a classic 1/f dependence with a Hooge parameter that is ~ 5 times 10-3. ZnO FETs measured in a dry O2 - environment displayed elevated noise levels that can be attributed to increased fluctuations associated with O2 - on the nanowire surfaces. At 4.2 K, the deviceiquests noise spectra change from 1/f to Lorentzian type, and the current traces as a function of time show random telegraph signals (RTSs). The channel current RTSs are attributed to correlated carrier number and mobility fluctuation due to the trapping and emission of carriers by discrete border traps. At certain bias conditions, the current in the channel shows three-level switching events with amplitudes as high as 40 %, from which two individual defects with energies close to the Fermi level in the ZnO channel can be distinguished.\",\"PeriodicalId\":6415,\"journal\":{\"name\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"volume\":\"45 1\",\"pages\":\"1139-1143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2007.4601384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Random Telegraph Signals and 1/f Noise in ZnO Nanowire Field Effect Transistors
Single-crystal ZnO nanowires have been fabricated as field effect transistors (FETs). The low frequency noise in the drain current of n-type ZnO FETs has been investigated through random telegraph signals (RTSs) at 4.2 K and 1/f noise at room temperature. At room temperature, the noise power spectra have a classic 1/f dependence with a Hooge parameter that is ~ 5 times 10-3. ZnO FETs measured in a dry O2 - environment displayed elevated noise levels that can be attributed to increased fluctuations associated with O2 - on the nanowire surfaces. At 4.2 K, the deviceiquests noise spectra change from 1/f to Lorentzian type, and the current traces as a function of time show random telegraph signals (RTSs). The channel current RTSs are attributed to correlated carrier number and mobility fluctuation due to the trapping and emission of carriers by discrete border traps. At certain bias conditions, the current in the channel shows three-level switching events with amplitudes as high as 40 %, from which two individual defects with energies close to the Fermi level in the ZnO channel can be distinguished.