{"title":"石墨烯涡旋霍尔流体边缘的磁离激元激发","authors":"M. Rabiu, S. Mensah, I. Y. Seini, S. S. Abukari","doi":"10.1155/2016/8971759","DOIUrl":null,"url":null,"abstract":"We investigate magnetoplasmon dynamics localized on the edges of graphene vortex Hall fluid. The vortex matter captures an anomalous term that causes vortex localization near fluid boundary and creates a double boundary layer, with being filling factor. The term also has qualitative effect on resonant excitations of edge magnetoplasmons. We found that, for sharp edges under experimental conditions, graphene edge magnetoplasmon (EMP) resonances have similar behavior as in recent experiments. Gradual distinctions arise for smooth edges in the presence of the anomalous term, where a weak EMP peak appears. The second peak becomes well noticed as the smoothness is increased. We identified the resonant mode as an Inter-EMP. It originates from the oscillations of charges in the inner boundary of the double layer. The present observation brings to light the direct cause of Inter-EMP which remained to be detected in graphene experiments.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"231 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetoplasmon Excitations at Graphene Vortex Hall Fluid Edge\",\"authors\":\"M. Rabiu, S. Mensah, I. Y. Seini, S. S. Abukari\",\"doi\":\"10.1155/2016/8971759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate magnetoplasmon dynamics localized on the edges of graphene vortex Hall fluid. The vortex matter captures an anomalous term that causes vortex localization near fluid boundary and creates a double boundary layer, with being filling factor. The term also has qualitative effect on resonant excitations of edge magnetoplasmons. We found that, for sharp edges under experimental conditions, graphene edge magnetoplasmon (EMP) resonances have similar behavior as in recent experiments. Gradual distinctions arise for smooth edges in the presence of the anomalous term, where a weak EMP peak appears. The second peak becomes well noticed as the smoothness is increased. We identified the resonant mode as an Inter-EMP. It originates from the oscillations of charges in the inner boundary of the double layer. The present observation brings to light the direct cause of Inter-EMP which remained to be detected in graphene experiments.\",\"PeriodicalId\":20143,\"journal\":{\"name\":\"Physics Research International\",\"volume\":\"231 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Research International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/8971759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/8971759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetoplasmon Excitations at Graphene Vortex Hall Fluid Edge
We investigate magnetoplasmon dynamics localized on the edges of graphene vortex Hall fluid. The vortex matter captures an anomalous term that causes vortex localization near fluid boundary and creates a double boundary layer, with being filling factor. The term also has qualitative effect on resonant excitations of edge magnetoplasmons. We found that, for sharp edges under experimental conditions, graphene edge magnetoplasmon (EMP) resonances have similar behavior as in recent experiments. Gradual distinctions arise for smooth edges in the presence of the anomalous term, where a weak EMP peak appears. The second peak becomes well noticed as the smoothness is increased. We identified the resonant mode as an Inter-EMP. It originates from the oscillations of charges in the inner boundary of the double layer. The present observation brings to light the direct cause of Inter-EMP which remained to be detected in graphene experiments.