基于马科维茨模型的投资组合分析,考虑库存数量约束和目标收益或无目标收益

Asri Rula Hanifah, B. Subartini, S. Sukono
{"title":"基于马科维茨模型的投资组合分析,考虑库存数量约束和目标收益或无目标收益","authors":"Asri Rula Hanifah, B. Subartini, S. Sukono","doi":"10.46336/ijqrm.v3i4.358","DOIUrl":null,"url":null,"abstract":"Stock investment activities are inseparable from returns and risk, so an investor needs expertise to minimize investment risk. One way is by forming an optimal portfolio. The purpose of this research is to determine the number of stock lots in the optimal portfolio. This research analyzes the closing prices of stocks during the research period with the criteria of stocks being listed on the IDX30 index consecutively for 20 periods and belonging to the large cap group (the stock market capitalization exceeds $10 billion). Then the number of stock lots is calculated using the Markowitz model with stock lot constraints and target returns or without target returns. From the selected stocks, an optimal portfolio is formed using Microsoft Excel. Based on the research results, a combination of an optimal portfolio with a target return is ASII: 5, BBCA: 10, BBNI: 23, BBRI: 1, BMRI: 23, TLKM: 93, UNVR: 12, where the risk is 0,000149 and the target expected return is 0,00155. Meanwhile, the optimal portfolio without a target return is ASII: 8, BBCA: 7, BBNI: 32, BBRI: 40, BMRI: 9, TLKM: 62, UNVR: 17, where a risk is 0,000147 and the expected return is 0,00148. This research can be used as a consideration for investors in determining investment portfolios.","PeriodicalId":14309,"journal":{"name":"International Journal of Quantitative Research and Modeling","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portfolio Analysis Using the Markowitz Model with Stock Lot Constraints and Target Returns or Without Target Returns\",\"authors\":\"Asri Rula Hanifah, B. Subartini, S. Sukono\",\"doi\":\"10.46336/ijqrm.v3i4.358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock investment activities are inseparable from returns and risk, so an investor needs expertise to minimize investment risk. One way is by forming an optimal portfolio. The purpose of this research is to determine the number of stock lots in the optimal portfolio. This research analyzes the closing prices of stocks during the research period with the criteria of stocks being listed on the IDX30 index consecutively for 20 periods and belonging to the large cap group (the stock market capitalization exceeds $10 billion). Then the number of stock lots is calculated using the Markowitz model with stock lot constraints and target returns or without target returns. From the selected stocks, an optimal portfolio is formed using Microsoft Excel. Based on the research results, a combination of an optimal portfolio with a target return is ASII: 5, BBCA: 10, BBNI: 23, BBRI: 1, BMRI: 23, TLKM: 93, UNVR: 12, where the risk is 0,000149 and the target expected return is 0,00155. Meanwhile, the optimal portfolio without a target return is ASII: 8, BBCA: 7, BBNI: 32, BBRI: 40, BMRI: 9, TLKM: 62, UNVR: 17, where a risk is 0,000147 and the expected return is 0,00148. This research can be used as a consideration for investors in determining investment portfolios.\",\"PeriodicalId\":14309,\"journal\":{\"name\":\"International Journal of Quantitative Research and Modeling\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantitative Research and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46336/ijqrm.v3i4.358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantitative Research and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46336/ijqrm.v3i4.358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

股票投资活动离不开收益和风险,因此投资者需要专业知识来降低投资风险。一种方法是形成最优投资组合。本研究的目的是确定最优投资组合中的股票手数。本研究以连续20期在IDX30指数上市的股票属于大盘股(股票市值超过100亿美元)为标准,对研究期内股票的收盘价进行分析。然后利用马科维茨模型计算有库存约束和目标收益或无目标收益的库存数量。从所选股票中,使用Microsoft Excel形成最优投资组合。根据研究结果,最优投资组合与目标收益的组合为ASII: 5, BBCA: 10, BBNI: 23, bbi: 1, BMRI: 23, TLKM: 93, UNVR: 12,其中风险为000149,目标预期收益为00155。同时,无目标收益的最优投资组合为ASII: 8, BBCA: 7, BBNI: 32, bbi: 40, BMRI: 9, TLKM: 62, UNVR: 17,其中风险为000147,预期收益为000148。本研究可作为投资者决定投资组合的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portfolio Analysis Using the Markowitz Model with Stock Lot Constraints and Target Returns or Without Target Returns
Stock investment activities are inseparable from returns and risk, so an investor needs expertise to minimize investment risk. One way is by forming an optimal portfolio. The purpose of this research is to determine the number of stock lots in the optimal portfolio. This research analyzes the closing prices of stocks during the research period with the criteria of stocks being listed on the IDX30 index consecutively for 20 periods and belonging to the large cap group (the stock market capitalization exceeds $10 billion). Then the number of stock lots is calculated using the Markowitz model with stock lot constraints and target returns or without target returns. From the selected stocks, an optimal portfolio is formed using Microsoft Excel. Based on the research results, a combination of an optimal portfolio with a target return is ASII: 5, BBCA: 10, BBNI: 23, BBRI: 1, BMRI: 23, TLKM: 93, UNVR: 12, where the risk is 0,000149 and the target expected return is 0,00155. Meanwhile, the optimal portfolio without a target return is ASII: 8, BBCA: 7, BBNI: 32, BBRI: 40, BMRI: 9, TLKM: 62, UNVR: 17, where a risk is 0,000147 and the expected return is 0,00148. This research can be used as a consideration for investors in determining investment portfolios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信