解分数阶fredholm -积分微分方程的归一化Bernstein基

Abdul Khaleq O. Al-Jubory, S. H. Salih
{"title":"解分数阶fredholm -积分微分方程的归一化Bernstein基","authors":"Abdul Khaleq O. Al-Jubory, S. H. Salih","doi":"10.30526/2017.IHSCICONF.1821","DOIUrl":null,"url":null,"abstract":"In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations nonhomogeneous of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.","PeriodicalId":13236,"journal":{"name":"Ibn Al-Haitham Journal For Pure And Applied Science","volume":"45 1","pages":"491"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Normalization Bernstein Basis For Solving Fractional Fredholm-Integro Differential Equation\",\"authors\":\"Abdul Khaleq O. Al-Jubory, S. H. Salih\",\"doi\":\"10.30526/2017.IHSCICONF.1821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations nonhomogeneous of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.\",\"PeriodicalId\":13236,\"journal\":{\"name\":\"Ibn Al-Haitham Journal For Pure And Applied Science\",\"volume\":\"45 1\",\"pages\":\"491\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ibn Al-Haitham Journal For Pure And Applied Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30526/2017.IHSCICONF.1821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn Al-Haitham Journal For Pure And Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/2017.IHSCICONF.1821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用一种新的归一化Bernstein基来求解第二类非齐次分数阶积分微分方程的线性frereadholm问题。我们采用Petrov-Galerkian方法(PGM)通过归一化Bernstein基近似解(LFFIDEs),得到线性系统。文中给出了算例,并以表格和图表的形式说明了该方法的有效性和便捷性,克服了传统方法的不足。我们借助Matlab10解决了这个问题(LFFIDEs)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalization Bernstein Basis For Solving Fractional Fredholm-Integro Differential Equation
In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations nonhomogeneous of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信