{"title":"预测金融风险溢价的深度学习模型及其解释","authors":"A. Lo, Manish Singh","doi":"10.1080/14697688.2023.2203844","DOIUrl":null,"url":null,"abstract":"The measurement of financial risk premia, the amount that a risky asset will outperform a risk-free one, is an important problem in asset pricing. The noisiness and non-stationarity of asset returns makes the estimation of risk premia using machine learning (ML) techniques challenging. In this work, we develop ML models that solve the problems associated with risk premia forecasting by separating risk premia prediction into two independent tasks, a time series model and a cross-sectional model, and using neural networks with skip connections to enable their deep neural network training. These models are tested robustly with different metrics, and we observe that our models outperform several existing standard ML models. A known issue with ML models is their ‘black box’ nature, i.e. their opaqueness to interpretability. We interpret these deep neural networks using local approximation-based techniques that provide explanations for our model's predictions.","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"5 1","pages":"917 - 929"},"PeriodicalIF":1.5000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-learning models for forecasting financial risk premia and their interpretations\",\"authors\":\"A. Lo, Manish Singh\",\"doi\":\"10.1080/14697688.2023.2203844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The measurement of financial risk premia, the amount that a risky asset will outperform a risk-free one, is an important problem in asset pricing. The noisiness and non-stationarity of asset returns makes the estimation of risk premia using machine learning (ML) techniques challenging. In this work, we develop ML models that solve the problems associated with risk premia forecasting by separating risk premia prediction into two independent tasks, a time series model and a cross-sectional model, and using neural networks with skip connections to enable their deep neural network training. These models are tested robustly with different metrics, and we observe that our models outperform several existing standard ML models. A known issue with ML models is their ‘black box’ nature, i.e. their opaqueness to interpretability. We interpret these deep neural networks using local approximation-based techniques that provide explanations for our model's predictions.\",\"PeriodicalId\":20747,\"journal\":{\"name\":\"Quantitative Finance\",\"volume\":\"5 1\",\"pages\":\"917 - 929\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/14697688.2023.2203844\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/14697688.2023.2203844","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Deep-learning models for forecasting financial risk premia and their interpretations
The measurement of financial risk premia, the amount that a risky asset will outperform a risk-free one, is an important problem in asset pricing. The noisiness and non-stationarity of asset returns makes the estimation of risk premia using machine learning (ML) techniques challenging. In this work, we develop ML models that solve the problems associated with risk premia forecasting by separating risk premia prediction into two independent tasks, a time series model and a cross-sectional model, and using neural networks with skip connections to enable their deep neural network training. These models are tested robustly with different metrics, and we observe that our models outperform several existing standard ML models. A known issue with ML models is their ‘black box’ nature, i.e. their opaqueness to interpretability. We interpret these deep neural networks using local approximation-based techniques that provide explanations for our model's predictions.
期刊介绍:
The frontiers of finance are shifting rapidly, driven in part by the increasing use of quantitative methods in the field. Quantitative Finance welcomes original research articles that reflect the dynamism of this area. The journal provides an interdisciplinary forum for presenting both theoretical and empirical approaches and offers rapid publication of original new work with high standards of quality. The readership is broad, embracing researchers and practitioners across a range of specialisms and within a variety of organizations. All articles should aim to be of interest to this broad readership.