折线匹配中的模糊相似度和模糊包含度——以GIS中考古建模中潜在流识别为例

IF 0.3 Q4 REMOTE SENSING
R. Ďuračiová, Alexandra Rášová, T. Lieskovský
{"title":"折线匹配中的模糊相似度和模糊包含度——以GIS中考古建模中潜在流识别为例","authors":"R. Ďuračiová, Alexandra Rášová, T. Lieskovský","doi":"10.1515/rgg-2017-0020","DOIUrl":null,"url":null,"abstract":"Abstract When combining spatial data from various sources, it is often important to determine similarity or identity of spatial objects. Besides the differences in geometry, representations of spatial objects are inevitably more or less uncertain. Fuzzy set theory can be used to address both modelling of the spatial objects uncertainty and determining the identity, similarity, and inclusion of two sets as fuzzy identity, fuzzy similarity, and fuzzy inclusion. In this paper, we propose to use fuzzy measures to determine the similarity or identity of two uncertain spatial object representations in geographic information systems. Labelling the spatial objects by the degree of their similarity or inclusion measure makes the process of their identification more efficient. It reduces the need for a manual control. This leads to a more simple process of spatial datasets update from external data sources. We use this approach to get an accurate and correct representation of historical streams, which is derived from contemporary digital elevation model, i.e. we identify the segments that are similar to the streams depicted on historical maps.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Similarity and Fuzzy Inclusion Measures in Polyline Matching: A Case Study of Potential Streams Identification for Archaeological Modelling in GIS\",\"authors\":\"R. Ďuračiová, Alexandra Rášová, T. Lieskovský\",\"doi\":\"10.1515/rgg-2017-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract When combining spatial data from various sources, it is often important to determine similarity or identity of spatial objects. Besides the differences in geometry, representations of spatial objects are inevitably more or less uncertain. Fuzzy set theory can be used to address both modelling of the spatial objects uncertainty and determining the identity, similarity, and inclusion of two sets as fuzzy identity, fuzzy similarity, and fuzzy inclusion. In this paper, we propose to use fuzzy measures to determine the similarity or identity of two uncertain spatial object representations in geographic information systems. Labelling the spatial objects by the degree of their similarity or inclusion measure makes the process of their identification more efficient. It reduces the need for a manual control. This leads to a more simple process of spatial datasets update from external data sources. We use this approach to get an accurate and correct representation of historical streams, which is derived from contemporary digital elevation model, i.e. we identify the segments that are similar to the streams depicted on historical maps.\",\"PeriodicalId\":42010,\"journal\":{\"name\":\"Reports on Geodesy and Geoinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Geodesy and Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rgg-2017-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Geodesy and Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rgg-2017-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

摘要在组合各种来源的空间数据时,确定空间对象的相似性或同一性往往很重要。除了几何上的差异之外,空间对象的表示也不可避免地存在或多或少的不确定性。模糊集理论既可以用来解决空间对象的不确定性建模,也可以用来确定两个集合的身份、相似度和包含度,如模糊身份、模糊相似度和模糊包含度。在本文中,我们提出使用模糊度量来确定地理信息系统中两个不确定空间对象表示的相似性或同一性。通过相似度或包含度对空间对象进行标记,可以提高空间对象识别的效率。它减少了对手动控制的需要。这使得从外部数据源更新空间数据集的过程更加简单。我们使用这种方法来获得来自当代数字高程模型的历史河流的准确和正确的表示,即我们识别与历史地图上描绘的河流相似的片段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Similarity and Fuzzy Inclusion Measures in Polyline Matching: A Case Study of Potential Streams Identification for Archaeological Modelling in GIS
Abstract When combining spatial data from various sources, it is often important to determine similarity or identity of spatial objects. Besides the differences in geometry, representations of spatial objects are inevitably more or less uncertain. Fuzzy set theory can be used to address both modelling of the spatial objects uncertainty and determining the identity, similarity, and inclusion of two sets as fuzzy identity, fuzzy similarity, and fuzzy inclusion. In this paper, we propose to use fuzzy measures to determine the similarity or identity of two uncertain spatial object representations in geographic information systems. Labelling the spatial objects by the degree of their similarity or inclusion measure makes the process of their identification more efficient. It reduces the need for a manual control. This leads to a more simple process of spatial datasets update from external data sources. We use this approach to get an accurate and correct representation of historical streams, which is derived from contemporary digital elevation model, i.e. we identify the segments that are similar to the streams depicted on historical maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
28.60%
发文量
5
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信