{"title":"跨山流动二维可压缩欧拉方程的谱稳态解","authors":"J. Guerra, P. Ullrich","doi":"10.2140/camcos.2021.16.99","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":49265,"journal":{"name":"Communications in Applied Mathematics and Computational Science","volume":"8 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spectral steady-state solutions to the 2D compressible Euler equations for cross-mountain flows\",\"authors\":\"J. Guerra, P. Ullrich\",\"doi\":\"10.2140/camcos.2021.16.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":49265,\"journal\":{\"name\":\"Communications in Applied Mathematics and Computational Science\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied Mathematics and Computational Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/camcos.2021.16.99\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied Mathematics and Computational Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/camcos.2021.16.99","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
期刊介绍:
CAMCoS accepts innovative papers in all areas where mathematics and applications interact. In particular, the journal welcomes papers where an idea is followed from beginning to end — from an abstract beginning to a piece of software, or from a computational observation to a mathematical theory.