{"title":"扩展基于afm的应用程序的多功能工具","authors":"S. Deladi, N. Tas, G. Krijnen, M. Elwenspoek","doi":"10.1109/SENSOR.2005.1496383","DOIUrl":null,"url":null,"abstract":"A multifunctional tool which expands the application field of atomic force microscope-based surface modification is presented. The AFM-probe can be used for surface modification and in-situ characterization at the same time, due to a special configuration with two cantilevers. Various applications from different fields are presented, which were carried out with one and the same tool: in-situ characterization of wear generated with and without local lubrication (tribology), fountain-pen lithography in which material is deposited or removed (physical chemistry), and electrochemical metal deposition (electrochemistry).","PeriodicalId":22359,"journal":{"name":"The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05.","volume":"6 1","pages":"159-162 Vol. 1"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multifunctional tool for expanding AFM-based applications\",\"authors\":\"S. Deladi, N. Tas, G. Krijnen, M. Elwenspoek\",\"doi\":\"10.1109/SENSOR.2005.1496383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multifunctional tool which expands the application field of atomic force microscope-based surface modification is presented. The AFM-probe can be used for surface modification and in-situ characterization at the same time, due to a special configuration with two cantilevers. Various applications from different fields are presented, which were carried out with one and the same tool: in-situ characterization of wear generated with and without local lubrication (tribology), fountain-pen lithography in which material is deposited or removed (physical chemistry), and electrochemical metal deposition (electrochemistry).\",\"PeriodicalId\":22359,\"journal\":{\"name\":\"The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05.\",\"volume\":\"6 1\",\"pages\":\"159-162 Vol. 1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.2005.1496383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2005.1496383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multifunctional tool for expanding AFM-based applications
A multifunctional tool which expands the application field of atomic force microscope-based surface modification is presented. The AFM-probe can be used for surface modification and in-situ characterization at the same time, due to a special configuration with two cantilevers. Various applications from different fields are presented, which were carried out with one and the same tool: in-situ characterization of wear generated with and without local lubrication (tribology), fountain-pen lithography in which material is deposited or removed (physical chemistry), and electrochemical metal deposition (electrochemistry).