二元金属离子混合物中Ni + 2和Cd + 2的动员和清除研究共阳离子对生物吸附的影响

IF 5.8 3区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Yousaf, M. Salman, Fatima Saleem, Maryam Razzaq, Anum Hayat
{"title":"二元金属离子混合物中Ni + 2和Cd + 2的动员和清除研究共阳离子对生物吸附的影响","authors":"A. Yousaf, M. Salman, Fatima Saleem, Maryam Razzaq, Anum Hayat","doi":"10.1080/17518253.2023.2233988","DOIUrl":null,"url":null,"abstract":"ABSTRACT Scavenging of Nickel and Cadmium from synthetic metal systems was studied by using Ficus benghalensis as a biosorbent. The characteristic behavior of biosorbent was evaluated by Fourier transform spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Findings were supportive of selected biomass during the experimental procedure. pH 5 was found as a point of zero charge. The concentrations of acidic and basic functional groups (0.3 and 0.02 mmol/g, respectively) on the surface of Ficus benghalensis were estimated by adopting Boehm’s titration. Biosorption parameters were performed, and the co-cation inhibitory effect was found to be significantly higher for Ni + 2 than Cd + 2. The attachment of Ni + 2 was hindered by Cd + 2 present in an aqueous medium. Biosorption capacity varied in Ni + 2 >Ni + 2 mix > Cd + 2 >Cd + 2 mix. For Ni, RMSE values increased from 0.34–0.61 because Ni + 2 faced the inhibitory effect of Cd + 2, but the case was inverse for Cd + 2. GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"118 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobilization and scavenging of Ni + 2 and Cd + 2 from binary metal ions mixture to study the influence of co-cation on biosorption\",\"authors\":\"A. Yousaf, M. Salman, Fatima Saleem, Maryam Razzaq, Anum Hayat\",\"doi\":\"10.1080/17518253.2023.2233988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Scavenging of Nickel and Cadmium from synthetic metal systems was studied by using Ficus benghalensis as a biosorbent. The characteristic behavior of biosorbent was evaluated by Fourier transform spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Findings were supportive of selected biomass during the experimental procedure. pH 5 was found as a point of zero charge. The concentrations of acidic and basic functional groups (0.3 and 0.02 mmol/g, respectively) on the surface of Ficus benghalensis were estimated by adopting Boehm’s titration. Biosorption parameters were performed, and the co-cation inhibitory effect was found to be significantly higher for Ni + 2 than Cd + 2. The attachment of Ni + 2 was hindered by Cd + 2 present in an aqueous medium. Biosorption capacity varied in Ni + 2 >Ni + 2 mix > Cd + 2 >Cd + 2 mix. For Ni, RMSE values increased from 0.34–0.61 because Ni + 2 faced the inhibitory effect of Cd + 2, but the case was inverse for Cd + 2. GRAPHICAL ABSTRACT\",\"PeriodicalId\":12768,\"journal\":{\"name\":\"Green Chemistry Letters and Reviews\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry Letters and Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/17518253.2023.2233988\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry Letters and Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/17518253.2023.2233988","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobilization and scavenging of Ni + 2 and Cd + 2 from binary metal ions mixture to study the influence of co-cation on biosorption
ABSTRACT Scavenging of Nickel and Cadmium from synthetic metal systems was studied by using Ficus benghalensis as a biosorbent. The characteristic behavior of biosorbent was evaluated by Fourier transform spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Findings were supportive of selected biomass during the experimental procedure. pH 5 was found as a point of zero charge. The concentrations of acidic and basic functional groups (0.3 and 0.02 mmol/g, respectively) on the surface of Ficus benghalensis were estimated by adopting Boehm’s titration. Biosorption parameters were performed, and the co-cation inhibitory effect was found to be significantly higher for Ni + 2 than Cd + 2. The attachment of Ni + 2 was hindered by Cd + 2 present in an aqueous medium. Biosorption capacity varied in Ni + 2 >Ni + 2 mix > Cd + 2 >Cd + 2 mix. For Ni, RMSE values increased from 0.34–0.61 because Ni + 2 faced the inhibitory effect of Cd + 2, but the case was inverse for Cd + 2. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry Letters and Reviews
Green Chemistry Letters and Reviews CHEMISTRY, MULTIDISCIPLINARY-GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
CiteScore
9.10
自引率
3.00%
发文量
48
期刊介绍: Green Chemistry Letters and Reviews is an Open Access, peer-reviewed journal focused on rapid publication of innovative new syntheses and procedures that reduce or eliminate the use and generation of hazardous materials. Reviews of state-of-the-art green chemistry technologies are also included within the journal''s scope. Green Chemistry Letters and Reviews is divided into three overlapping topic areas: research, education, and industrial implementation. The journal publishes both letters, which concisely communicate the most time-sensitive results, and reviews, which aid researchers in understanding the state of science on important green chemistry topics. Submissions are encouraged which apply the 12 principles of green chemistry to: -Green Chemistry Education- Synthetic Reaction Pathways- Research and Process Analytical Techniques- Separation and Purification Technologies- Renewable Feedstocks- Degradable Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信