关于BSDEs的Malliavin可微性

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Thibaut Mastrolia, Dylan Possamai, Anthony R'eveillac
{"title":"关于BSDEs的Malliavin可微性","authors":"Thibaut Mastrolia, Dylan Possamai, Anthony R'eveillac","doi":"10.1214/15-AIHP723","DOIUrl":null,"url":null,"abstract":"In this paper we provide new conditions for the Malliavin differentiability of solutions of Lipschitz or quadratic BSDEs. Our results rely on the interpretation of the Malliavin derivative as a Gâteaux derivative in the directions of the Cameron-Martin space. Incidentally , we provide a new formulation for the characterization of the Malliavin-Sobolev type spaces $D^{1,p}$ .","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"83 1","pages":"464-492"},"PeriodicalIF":1.2000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"On the Malliavin differentiability of BSDEs\",\"authors\":\"Thibaut Mastrolia, Dylan Possamai, Anthony R'eveillac\",\"doi\":\"10.1214/15-AIHP723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide new conditions for the Malliavin differentiability of solutions of Lipschitz or quadratic BSDEs. Our results rely on the interpretation of the Malliavin derivative as a Gâteaux derivative in the directions of the Cameron-Martin space. Incidentally , we provide a new formulation for the characterization of the Malliavin-Sobolev type spaces $D^{1,p}$ .\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"83 1\",\"pages\":\"464-492\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/15-AIHP723\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AIHP723","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 18

摘要

本文给出了Lipschitz或二次BSDEs解的Malliavin可微性的新条件。我们的结果依赖于将Malliavin导数解释为Cameron-Martin空间方向上的g teaux导数。顺便提一下,我们为Malliavin-Sobolev型空间$D^{1,p}$的表征提供了一个新的表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Malliavin differentiability of BSDEs
In this paper we provide new conditions for the Malliavin differentiability of solutions of Lipschitz or quadratic BSDEs. Our results rely on the interpretation of the Malliavin derivative as a Gâteaux derivative in the directions of the Cameron-Martin space. Incidentally , we provide a new formulation for the characterization of the Malliavin-Sobolev type spaces $D^{1,p}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信