带噪声前馈神经网络能量函数的概率极限性质

Cong Jin
{"title":"带噪声前馈神经网络能量函数的概率极限性质","authors":"Cong Jin","doi":"10.1109/ICMLC.2002.1176695","DOIUrl":null,"url":null,"abstract":"A probability limit property is proposed for the weight vectors W of feed-forward neural networks when both the input data and output data contain noise or when only the output data contains noise. By theoretical analysis of the energy function of a feed-forward neural network, the paper points out that a least square energy function isn't a good choice. The result is good enough for future research.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"6 1","pages":"1-3 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability limit property for energy function to feed-forward neural networks with noise\",\"authors\":\"Cong Jin\",\"doi\":\"10.1109/ICMLC.2002.1176695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A probability limit property is proposed for the weight vectors W of feed-forward neural networks when both the input data and output data contain noise or when only the output data contains noise. By theoretical analysis of the energy function of a feed-forward neural network, the paper points out that a least square energy function isn't a good choice. The result is good enough for future research.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"6 1\",\"pages\":\"1-3 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1176695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1176695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了前馈神经网络在输入数据和输出数据都包含噪声或仅输出数据包含噪声时权向量W的概率极限性质。通过对前馈神经网络能量函数的理论分析,指出最小二乘能量函数不是一个好的选择。这一结果对未来的研究来说是足够好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probability limit property for energy function to feed-forward neural networks with noise
A probability limit property is proposed for the weight vectors W of feed-forward neural networks when both the input data and output data contain noise or when only the output data contains noise. By theoretical analysis of the energy function of a feed-forward neural network, the paper points out that a least square energy function isn't a good choice. The result is good enough for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信