{"title":"利用控制棒对艾哈迈德体进行被动流动控制","authors":"AHMET ŞUMNU","doi":"10.15282/ijame.19.4.2022.03.0777","DOIUrl":null,"url":null,"abstract":"In the current study, numerical analysis of passive control flow with a control rod for Ahmed body is performed at different slant angles and velocities and placed rod locations on the slant surface. The aim of the study is to improve aerodynamic performance by preventing flow separation on the slant surface of Ahmed body using a control rod. This passive flow control method uses a control rod that has not been applied for simplified ground vehicles before. Therefore, it can be said that this study is a new example in point of a passive flow control application for Ahmed body. The solution of the study is performed by using the Computational Fluid Dynamics (CFD) method. The solutions are firstly performed for baseline geometry, and the results are compared with experimental data reported in the literature for validation. CFD solutions are carried out by means of the ANSYS and RNG k- turbulence model is used to simulate flow-field since it captures the effect of turbulent flow. The solutions used a control rod with a 20 mm diameter performed at a dimensionless location (X/L=0.057 and 0.153) for Ahmed body. The results are presented visually in the figures, and drag coefficient values are also given in Table format. It is concluded that the rod application is useful for some specified slant angles and velocities since flow separation delays and suppresses the slant surface. The maximum drag reduction is achieved at about 6.153% at a slant angle of 35° and 20 m/s velocity of air, and location of control rod of 0.057, while the minimum drag reduction is about 1.048% at slant angle of 25° and velocity of air at 40 m/s and location of control rod of 0.153.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive Flow Control of Ahmed Body using Control Rod\",\"authors\":\"AHMET ŞUMNU\",\"doi\":\"10.15282/ijame.19.4.2022.03.0777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current study, numerical analysis of passive control flow with a control rod for Ahmed body is performed at different slant angles and velocities and placed rod locations on the slant surface. The aim of the study is to improve aerodynamic performance by preventing flow separation on the slant surface of Ahmed body using a control rod. This passive flow control method uses a control rod that has not been applied for simplified ground vehicles before. Therefore, it can be said that this study is a new example in point of a passive flow control application for Ahmed body. The solution of the study is performed by using the Computational Fluid Dynamics (CFD) method. The solutions are firstly performed for baseline geometry, and the results are compared with experimental data reported in the literature for validation. CFD solutions are carried out by means of the ANSYS and RNG k- turbulence model is used to simulate flow-field since it captures the effect of turbulent flow. The solutions used a control rod with a 20 mm diameter performed at a dimensionless location (X/L=0.057 and 0.153) for Ahmed body. The results are presented visually in the figures, and drag coefficient values are also given in Table format. It is concluded that the rod application is useful for some specified slant angles and velocities since flow separation delays and suppresses the slant surface. The maximum drag reduction is achieved at about 6.153% at a slant angle of 35° and 20 m/s velocity of air, and location of control rod of 0.057, while the minimum drag reduction is about 1.048% at slant angle of 25° and velocity of air at 40 m/s and location of control rod of 0.153.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.4.2022.03.0777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.4.2022.03.0777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Passive Flow Control of Ahmed Body using Control Rod
In the current study, numerical analysis of passive control flow with a control rod for Ahmed body is performed at different slant angles and velocities and placed rod locations on the slant surface. The aim of the study is to improve aerodynamic performance by preventing flow separation on the slant surface of Ahmed body using a control rod. This passive flow control method uses a control rod that has not been applied for simplified ground vehicles before. Therefore, it can be said that this study is a new example in point of a passive flow control application for Ahmed body. The solution of the study is performed by using the Computational Fluid Dynamics (CFD) method. The solutions are firstly performed for baseline geometry, and the results are compared with experimental data reported in the literature for validation. CFD solutions are carried out by means of the ANSYS and RNG k- turbulence model is used to simulate flow-field since it captures the effect of turbulent flow. The solutions used a control rod with a 20 mm diameter performed at a dimensionless location (X/L=0.057 and 0.153) for Ahmed body. The results are presented visually in the figures, and drag coefficient values are also given in Table format. It is concluded that the rod application is useful for some specified slant angles and velocities since flow separation delays and suppresses the slant surface. The maximum drag reduction is achieved at about 6.153% at a slant angle of 35° and 20 m/s velocity of air, and location of control rod of 0.057, while the minimum drag reduction is about 1.048% at slant angle of 25° and velocity of air at 40 m/s and location of control rod of 0.153.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.