{"title":"基于拓扑绝缘体的超低功耗非易失性存储器设计探索","authors":"Yuhao Wang, Hao Yu","doi":"10.1145/2765491.2765498","DOIUrl":null,"url":null,"abstract":"Topological insulator (TI) is recently discovered nano-device whose bulk acts as insulator but surface behaves as metal. As state information in a TI device is conducted by ordered spins, it draws tremendous interest for ultra-low power computing. This paper shows a state-space modeling and design exploration of TI device for non-volatile memory (NVM) design. The non-traditional electrical state in TI is extracted and modeled in a SPICE-like simulator. The model is the employed for hybrid CMOS-TI NVM design explorations for both memory cell and memory array. The experiment results show that TI based NVM exhibits a fast write and read latency as low as 20ns. In addition, compared to other emerging NVM technologies, it exhibits several orders of magnitude lower operation energy.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"1 1","pages":"30-35"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design exploration of ultra-low power non-volatile memory based on topological insulator\",\"authors\":\"Yuhao Wang, Hao Yu\",\"doi\":\"10.1145/2765491.2765498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological insulator (TI) is recently discovered nano-device whose bulk acts as insulator but surface behaves as metal. As state information in a TI device is conducted by ordered spins, it draws tremendous interest for ultra-low power computing. This paper shows a state-space modeling and design exploration of TI device for non-volatile memory (NVM) design. The non-traditional electrical state in TI is extracted and modeled in a SPICE-like simulator. The model is the employed for hybrid CMOS-TI NVM design explorations for both memory cell and memory array. The experiment results show that TI based NVM exhibits a fast write and read latency as low as 20ns. In addition, compared to other emerging NVM technologies, it exhibits several orders of magnitude lower operation energy.\",\"PeriodicalId\":6519,\"journal\":{\"name\":\"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"volume\":\"1 1\",\"pages\":\"30-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2765491.2765498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2765491.2765498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design exploration of ultra-low power non-volatile memory based on topological insulator
Topological insulator (TI) is recently discovered nano-device whose bulk acts as insulator but surface behaves as metal. As state information in a TI device is conducted by ordered spins, it draws tremendous interest for ultra-low power computing. This paper shows a state-space modeling and design exploration of TI device for non-volatile memory (NVM) design. The non-traditional electrical state in TI is extracted and modeled in a SPICE-like simulator. The model is the employed for hybrid CMOS-TI NVM design explorations for both memory cell and memory array. The experiment results show that TI based NVM exhibits a fast write and read latency as low as 20ns. In addition, compared to other emerging NVM technologies, it exhibits several orders of magnitude lower operation energy.