基于深度q网络的虚拟同步发电机鲁棒性自适应参数

IF 0.2 Q4 AREA STUDIES
Wenjie Wu, Feng Guo, Qiulong Ni, Xing Liu, Lin Qiu, Youtong Fang
{"title":"基于深度q网络的虚拟同步发电机鲁棒性自适应参数","authors":"Wenjie Wu, Feng Guo, Qiulong Ni, Xing Liu, Lin Qiu, Youtong Fang","doi":"10.1109/ITECAsia-Pacific56316.2022.9941893","DOIUrl":null,"url":null,"abstract":"This paper investigates a reinforcement learning based adaptive robustness parameter tunning approach for the virtual synchronous generator (VSG). Particularly, a deep Q-network (DQN) algorithm is employed to realize the real-time parameter tuning of inertia and damping coefficient in the VSG controller. The proposed parameter tuning approach is confirmed by the simulation results and compared with the conventional VSG controller with fixed parameters.","PeriodicalId":45126,"journal":{"name":"Asia-Pacific Journal-Japan Focus","volume":"50 1","pages":"1-4"},"PeriodicalIF":0.2000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Q-Network based Adaptive Robustness Parameters for Virtual Synchronous Generator\",\"authors\":\"Wenjie Wu, Feng Guo, Qiulong Ni, Xing Liu, Lin Qiu, Youtong Fang\",\"doi\":\"10.1109/ITECAsia-Pacific56316.2022.9941893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a reinforcement learning based adaptive robustness parameter tunning approach for the virtual synchronous generator (VSG). Particularly, a deep Q-network (DQN) algorithm is employed to realize the real-time parameter tuning of inertia and damping coefficient in the VSG controller. The proposed parameter tuning approach is confirmed by the simulation results and compared with the conventional VSG controller with fixed parameters.\",\"PeriodicalId\":45126,\"journal\":{\"name\":\"Asia-Pacific Journal-Japan Focus\",\"volume\":\"50 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal-Japan Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9941893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AREA STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal-Japan Focus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9941893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AREA STUDIES","Score":null,"Total":0}
引用次数: 1

摘要

研究了一种基于强化学习的虚拟同步发电机鲁棒性参数自适应整定方法。其中,采用深度q -网络(deep Q-network, DQN)算法实现了VSG控制器中惯量和阻尼系数的实时参数整定。仿真结果验证了所提出的参数整定方法的有效性,并与常规的固定参数VSG控制器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Q-Network based Adaptive Robustness Parameters for Virtual Synchronous Generator
This paper investigates a reinforcement learning based adaptive robustness parameter tunning approach for the virtual synchronous generator (VSG). Particularly, a deep Q-network (DQN) algorithm is employed to realize the real-time parameter tuning of inertia and damping coefficient in the VSG controller. The proposed parameter tuning approach is confirmed by the simulation results and compared with the conventional VSG controller with fixed parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信