{"title":"广义可解baumslag -孤子群幂零商的R∞R_ {\\infty}性质","authors":"Wagner C. Sgobbi, Da Silva, D. Vendrúscolo","doi":"10.1515/jgth-2022-0129","DOIUrl":null,"url":null,"abstract":"Abstract We say a group 𝐺 has property R ∞ R_{\\infty} if the number R ( φ ) R(\\varphi) of twisted conjugacy classes is infinite for every automorphism 𝜑 of 𝐺. For such groups, the R ∞ R_{\\infty} -nilpotency degree is the least integer 𝑐 such that G / γ c + 1 ( G ) G/\\gamma_{c+1}(G) has property R ∞ R_{\\infty} . In this work, we compute the R ∞ R_{\\infty} -nilpotency degree of all Generalized Solvable Baumslag–Solitar groups Γ n \\Gamma_{n} . Moreover, we compute the lower central series of Γ n \\Gamma_{n} , write the nilpotent quotients Γ n , c = Γ n / γ c + 1 ( Γ n ) \\Gamma_{n,c}=\\Gamma_{n}/\\gamma_{c+1}(\\Gamma_{n}) as semidirect products of finitely generated abelian groups and classify which invertible integer matrices can be extended to automorphisms of Γ n , c \\Gamma_{n,c} .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The R ∞ R_{\\\\infty} property for nilpotent quotients of Generalized Solvable Baumslag–Solitar groups\",\"authors\":\"Wagner C. Sgobbi, Da Silva, D. Vendrúscolo\",\"doi\":\"10.1515/jgth-2022-0129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We say a group 𝐺 has property R ∞ R_{\\\\infty} if the number R ( φ ) R(\\\\varphi) of twisted conjugacy classes is infinite for every automorphism 𝜑 of 𝐺. For such groups, the R ∞ R_{\\\\infty} -nilpotency degree is the least integer 𝑐 such that G / γ c + 1 ( G ) G/\\\\gamma_{c+1}(G) has property R ∞ R_{\\\\infty} . In this work, we compute the R ∞ R_{\\\\infty} -nilpotency degree of all Generalized Solvable Baumslag–Solitar groups Γ n \\\\Gamma_{n} . Moreover, we compute the lower central series of Γ n \\\\Gamma_{n} , write the nilpotent quotients Γ n , c = Γ n / γ c + 1 ( Γ n ) \\\\Gamma_{n,c}=\\\\Gamma_{n}/\\\\gamma_{c+1}(\\\\Gamma_{n}) as semidirect products of finitely generated abelian groups and classify which invertible integer matrices can be extended to automorphisms of Γ n , c \\\\Gamma_{n,c} .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要:对于𝐺的每一个自同构域中,如果扭曲共轭类的个数R¹(φ) R(\varphi)是无限的,则群𝐺具有R∞R_ {\infty}的性质。对于这样的群,R∞R_ {\infty} -幂零度是最小的整数𝑐,使得G/ γ c + 1¹(G) G/ \gamma _ {c+1} (G)具有R∞R_ {\infty}的性质。在这项工作中,我们计算了所有广义可解Baumslag-Solitar群Γ n \Gamma _ 的R∞R_ {\infty} -幂零度。此外,我们计算了Γ n的下中心级数{}\Gamma _ {n},将幂零商Γ n, c = Γ n / Γ c + 1 (Γ n) \Gamma _ {n,c} = \Gamma _ {n} / \gamma _ {c+1} (\Gamma _ {n})作为有限生成的阿贝群的半直积,并对可逆整数矩阵可扩展为Γ n的自同态进行了分类。C \Gamma _ {n,c}。
The R ∞ R_{\infty} property for nilpotent quotients of Generalized Solvable Baumslag–Solitar groups
Abstract We say a group 𝐺 has property R ∞ R_{\infty} if the number R ( φ ) R(\varphi) of twisted conjugacy classes is infinite for every automorphism 𝜑 of 𝐺. For such groups, the R ∞ R_{\infty} -nilpotency degree is the least integer 𝑐 such that G / γ c + 1 ( G ) G/\gamma_{c+1}(G) has property R ∞ R_{\infty} . In this work, we compute the R ∞ R_{\infty} -nilpotency degree of all Generalized Solvable Baumslag–Solitar groups Γ n \Gamma_{n} . Moreover, we compute the lower central series of Γ n \Gamma_{n} , write the nilpotent quotients Γ n , c = Γ n / γ c + 1 ( Γ n ) \Gamma_{n,c}=\Gamma_{n}/\gamma_{c+1}(\Gamma_{n}) as semidirect products of finitely generated abelian groups and classify which invertible integer matrices can be extended to automorphisms of Γ n , c \Gamma_{n,c} .