超参数优化:基础、算法、最佳实践和公开挑战

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
B. Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas, Theresa Ullmann, M. Becker, A. Boulesteix, Difan Deng, M. Lindauer
{"title":"超参数优化:基础、算法、最佳实践和公开挑战","authors":"B. Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas, Theresa Ullmann, M. Becker, A. Boulesteix, Difan Deng, M. Lindauer","doi":"10.1002/widm.1484","DOIUrl":null,"url":null,"abstract":"Most machine learning algorithms are configured by a set of hyperparameters whose values must be carefully chosen and which often considerably impact performance. To avoid a time‐consuming and irreproducible manual process of trial‐and‐error to find well‐performing hyperparameter configurations, various automatic hyperparameter optimization (HPO) methods—for example, based on resampling error estimation for supervised machine learning—can be employed. After introducing HPO from a general perspective, this paper reviews important HPO methods, from simple techniques such as grid or random search to more advanced methods like evolution strategies, Bayesian optimization, Hyperband, and racing. This work gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with machine learning pipelines, runtime improvements, and parallelization.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"22 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":"{\"title\":\"Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges\",\"authors\":\"B. Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas, Theresa Ullmann, M. Becker, A. Boulesteix, Difan Deng, M. Lindauer\",\"doi\":\"10.1002/widm.1484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most machine learning algorithms are configured by a set of hyperparameters whose values must be carefully chosen and which often considerably impact performance. To avoid a time‐consuming and irreproducible manual process of trial‐and‐error to find well‐performing hyperparameter configurations, various automatic hyperparameter optimization (HPO) methods—for example, based on resampling error estimation for supervised machine learning—can be employed. After introducing HPO from a general perspective, this paper reviews important HPO methods, from simple techniques such as grid or random search to more advanced methods like evolution strategies, Bayesian optimization, Hyperband, and racing. This work gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with machine learning pipelines, runtime improvements, and parallelization.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1484\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1484","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 113

摘要

大多数机器学习算法都是由一组超参数配置的,这些超参数的值必须仔细选择,并且通常会对性能产生很大影响。为了避免耗时且不可重复的手动试错过程来寻找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重采样误差估计。在从一般角度介绍HPO之后,本文回顾了重要的HPO方法,从简单的网格或随机搜索技术到更高级的方法,如进化策略、贝叶斯优化、Hyperband和赛车。这项工作提供了关于执行HPO时要做出的重要选择的实用建议,包括HPO算法本身、性能评估、如何将HPO与机器学习管道结合起来、运行时改进和并行化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges

Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges
Most machine learning algorithms are configured by a set of hyperparameters whose values must be carefully chosen and which often considerably impact performance. To avoid a time‐consuming and irreproducible manual process of trial‐and‐error to find well‐performing hyperparameter configurations, various automatic hyperparameter optimization (HPO) methods—for example, based on resampling error estimation for supervised machine learning—can be employed. After introducing HPO from a general perspective, this paper reviews important HPO methods, from simple techniques such as grid or random search to more advanced methods like evolution strategies, Bayesian optimization, Hyperband, and racing. This work gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with machine learning pipelines, runtime improvements, and parallelization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信