对称群的Hochschild上同调与生成函数

Pub Date : 2023-03-09 DOI:10.1515/jgth-2022-0130
D. Benson, R. Kessar, M. Linckelmann
{"title":"对称群的Hochschild上同调与生成函数","authors":"D. Benson, R. Kessar, M. Linckelmann","doi":"10.1515/jgth-2022-0130","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we compute the dimensions of the Hochschild cohomology of symmetric groups over prime fields in low degrees. This involves us in studying some partition identities and generating functions of the dimensions in any fixed degree of the Hochschild cohomology of symmetric groups. We show that the generating function of the dimensions of the Hochschild cohomology in any fixed degree of the symmetric groups differs from that in degree 0 by a rational function.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hochschild cohomology of symmetric groups and generating functions\",\"authors\":\"D. Benson, R. Kessar, M. Linckelmann\",\"doi\":\"10.1515/jgth-2022-0130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we compute the dimensions of the Hochschild cohomology of symmetric groups over prime fields in low degrees. This involves us in studying some partition identities and generating functions of the dimensions in any fixed degree of the Hochschild cohomology of symmetric groups. We show that the generating function of the dimensions of the Hochschild cohomology in any fixed degree of the symmetric groups differs from that in degree 0 by a rational function.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文计算了低次素数域上对称群的Hochschild上同调的维数。这涉及到我们研究对称群的Hochschild上同调的任意固定次维的一些划分恒等式和生成函数。证明了对称群在任意定次上的Hochschild上同调维的生成函数与在0次上的生成函数有一个有理数的不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Hochschild cohomology of symmetric groups and generating functions
Abstract In this article, we compute the dimensions of the Hochschild cohomology of symmetric groups over prime fields in low degrees. This involves us in studying some partition identities and generating functions of the dimensions in any fixed degree of the Hochschild cohomology of symmetric groups. We show that the generating function of the dimensions of the Hochschild cohomology in any fixed degree of the symmetric groups differs from that in degree 0 by a rational function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信