基于进化神经网络的IDR货币名义价值模型分类及初始化

Pub Date : 2020-01-20 DOI:10.31289/jite.v3i2.3284
A. Al-Khowarizmi
{"title":"基于进化神经网络的IDR货币名义价值模型分类及初始化","authors":"A. Al-Khowarizmi","doi":"10.31289/jite.v3i2.3284","DOIUrl":null,"url":null,"abstract":"Indonesian Rupiah (IDR) banknotes have unique characteristics that distinguish them from one another, both in the form of numbers, zeros and background images. This pattern of each type of banknote will be modeled in order to test the nominal value and authenticity of IDR, so as to be able to distinguish not only IDR banknotes but also other denominations. Evolutionary Neural Network is the development of the concept of evolution to get a neural network (NN) using genetic algorithms (GA). In this paper the application of evolutionary neural networks with less input is able to have a better success rate in object recognition, because the parameters for producing neural networks are far better","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Model Classification Of Nominal Value And The Original Of IDR Money By Applying Evolutionary Neural Network\",\"authors\":\"A. Al-Khowarizmi\",\"doi\":\"10.31289/jite.v3i2.3284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indonesian Rupiah (IDR) banknotes have unique characteristics that distinguish them from one another, both in the form of numbers, zeros and background images. This pattern of each type of banknote will be modeled in order to test the nominal value and authenticity of IDR, so as to be able to distinguish not only IDR banknotes but also other denominations. Evolutionary Neural Network is the development of the concept of evolution to get a neural network (NN) using genetic algorithms (GA). In this paper the application of evolutionary neural networks with less input is able to have a better success rate in object recognition, because the parameters for producing neural networks are far better\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31289/jite.v3i2.3284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31289/jite.v3i2.3284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

印尼盾(IDR)的纸币具有独特的特征,无论是数字、零还是背景图像,都能将它们区分开来。为了检验印尼盾纸币的面值和真伪,我们将对每一种纸币的这种图案进行建模,这样不仅可以区分印尼盾纸币,还可以区分其他面额的纸币。进化神经网络是进化概念的发展,利用遗传算法得到一种神经网络(NN)。在本文中,由于生成神经网络的参数要好得多,输入较少的进化神经网络在目标识别中的应用成功率更高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Model Classification Of Nominal Value And The Original Of IDR Money By Applying Evolutionary Neural Network
Indonesian Rupiah (IDR) banknotes have unique characteristics that distinguish them from one another, both in the form of numbers, zeros and background images. This pattern of each type of banknote will be modeled in order to test the nominal value and authenticity of IDR, so as to be able to distinguish not only IDR banknotes but also other denominations. Evolutionary Neural Network is the development of the concept of evolution to get a neural network (NN) using genetic algorithms (GA). In this paper the application of evolutionary neural networks with less input is able to have a better success rate in object recognition, because the parameters for producing neural networks are far better
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信