利用自组装和两步转移形成亚微粒图案的通用方法

T. Ozaki, K. Sugano, T. Tsuchiya, O. Tabata
{"title":"利用自组装和两步转移形成亚微粒图案的通用方法","authors":"T. Ozaki, K. Sugano, T. Tsuchiya, O. Tabata","doi":"10.1109/MEMSYS.2007.4433108","DOIUrl":null,"url":null,"abstract":"We propose a method of sub-micro particle pattern formation with high productivity, flexibility and accuracy of pattern. The proposed process is composed of template-assisted self-assembly (TASA) for particle self-assembly and subsequent two-step transfer of the assembled particles. In the self-assembly process, the pattern of 70% was successfully self-assembled. In the first transfer step, the transfer yield of 79% was obtained by SAM (self-assembled monolayer) coated carrier substrate. In the second transfer step, the transfer temperature of 115degC provided the maximum transfer yield of 85%. The overall process yield of 48% was achieved by optimized process parameters and it was successfully demonstrated that the proposed method fabricates any sub-micro particle pattern.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"34 1","pages":"353-356"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Versatile method of sub-micro particle pattern formation using self-assembly and two-step transfer\",\"authors\":\"T. Ozaki, K. Sugano, T. Tsuchiya, O. Tabata\",\"doi\":\"10.1109/MEMSYS.2007.4433108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method of sub-micro particle pattern formation with high productivity, flexibility and accuracy of pattern. The proposed process is composed of template-assisted self-assembly (TASA) for particle self-assembly and subsequent two-step transfer of the assembled particles. In the self-assembly process, the pattern of 70% was successfully self-assembled. In the first transfer step, the transfer yield of 79% was obtained by SAM (self-assembled monolayer) coated carrier substrate. In the second transfer step, the transfer temperature of 115degC provided the maximum transfer yield of 85%. The overall process yield of 48% was achieved by optimized process parameters and it was successfully demonstrated that the proposed method fabricates any sub-micro particle pattern.\",\"PeriodicalId\":6388,\"journal\":{\"name\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"34 1\",\"pages\":\"353-356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2007.4433108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种具有高生产率、高灵活性和高准确性的亚微粒图案生成方法。该过程由模板辅助自组装(TASA)和随后的两步转移组装的粒子组成。在自组装过程中,70%的图案成功自组装。在第一步转移中,自组装单层膜(SAM)涂层载体基底获得了79%的转移率。在第二步转移中,转移温度为115℃,转移收率最高可达85%。优化后的工艺参数可使总收率达到48%,并成功地证明了该方法可以制备任何亚微观颗粒图案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Versatile method of sub-micro particle pattern formation using self-assembly and two-step transfer
We propose a method of sub-micro particle pattern formation with high productivity, flexibility and accuracy of pattern. The proposed process is composed of template-assisted self-assembly (TASA) for particle self-assembly and subsequent two-step transfer of the assembled particles. In the self-assembly process, the pattern of 70% was successfully self-assembled. In the first transfer step, the transfer yield of 79% was obtained by SAM (self-assembled monolayer) coated carrier substrate. In the second transfer step, the transfer temperature of 115degC provided the maximum transfer yield of 85%. The overall process yield of 48% was achieved by optimized process parameters and it was successfully demonstrated that the proposed method fabricates any sub-micro particle pattern.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信