共接触系统的拉格朗日-哈密顿形式

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
X. Rivas, Daniel Torres
{"title":"共接触系统的拉格朗日-哈密顿形式","authors":"X. Rivas, Daniel Torres","doi":"10.3934/jgm.2023001","DOIUrl":null,"url":null,"abstract":"In this paper we present a unified Lagrangian–Hamiltonian geometric formalism to describe time-dependent contact mechanical systems, based on the one first introduced by K. Kamimura and later formalized by R. Skinner and R. Rusk. This formalism is especially interesting when dealing with systems described by singular Lagrangians, since the second-order condition is recovered from the constraint algorithm. In order to illustrate this formulation, some relevant examples are described in full detail: the Duffing equation, an ascending particle with time-dependent mass and quadratic drag, and a charged particle in a stationary electric field with a time-dependent constraint.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"1991 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Lagrangian–Hamiltonian formalism for cocontact systems\",\"authors\":\"X. Rivas, Daniel Torres\",\"doi\":\"10.3934/jgm.2023001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a unified Lagrangian–Hamiltonian geometric formalism to describe time-dependent contact mechanical systems, based on the one first introduced by K. Kamimura and later formalized by R. Skinner and R. Rusk. This formalism is especially interesting when dealing with systems described by singular Lagrangians, since the second-order condition is recovered from the constraint algorithm. In order to illustrate this formulation, some relevant examples are described in full detail: the Duffing equation, an ascending particle with time-dependent mass and quadratic drag, and a charged particle in a stationary electric field with a time-dependent constraint.\",\"PeriodicalId\":49161,\"journal\":{\"name\":\"Journal of Geometric Mechanics\",\"volume\":\"1991 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jgm.2023001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2023001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一个统一的拉格朗日-哈密顿几何形式来描述时变接触机械系统,该几何形式首先由K. Kamimura引入,后来由R. Skinner和R. Rusk形式化。当处理由奇异拉格朗日量描述的系统时,这种形式特别有趣,因为二阶条件是从约束算法中恢复的。为了说明这一公式,详细描述了一些相关的例子:Duffing方程,具有随时间变化的质量和二次阻力的上升粒子,以及具有随时间变化约束的静止电场中的带电粒子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lagrangian–Hamiltonian formalism for cocontact systems
In this paper we present a unified Lagrangian–Hamiltonian geometric formalism to describe time-dependent contact mechanical systems, based on the one first introduced by K. Kamimura and later formalized by R. Skinner and R. Rusk. This formalism is especially interesting when dealing with systems described by singular Lagrangians, since the second-order condition is recovered from the constraint algorithm. In order to illustrate this formulation, some relevant examples are described in full detail: the Duffing equation, an ascending particle with time-dependent mass and quadratic drag, and a charged particle in a stationary electric field with a time-dependent constraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信