基于深度图像自动生成的点云分类网络结构

Riccardo Roveri, Lukas Rahmann, C. Öztireli, M. Gross
{"title":"基于深度图像自动生成的点云分类网络结构","authors":"Riccardo Roveri, Lukas Rahmann, C. Öztireli, M. Gross","doi":"10.1109/CVPR.2018.00439","DOIUrl":null,"url":null,"abstract":"We propose a novel neural network architecture for point cloud classification. Our key idea is to automatically transform the 3D unordered input data into a set of useful 2D depth images, and classify them by exploiting well performing image classification CNNs. We present new differentiable module designs to generate depth images from a point cloud. These modules can be combined with any network architecture for processing point clouds. We utilize them in combination with state-of-the-art classification networks, and get results competitive with the state of the art in point cloud classification. Furthermore, our architecture automatically produces informative images representing the input point cloud, which could be used for further applications such as point cloud visualization.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"62 1","pages":"4176-4184"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"A Network Architecture for Point Cloud Classification via Automatic Depth Images Generation\",\"authors\":\"Riccardo Roveri, Lukas Rahmann, C. Öztireli, M. Gross\",\"doi\":\"10.1109/CVPR.2018.00439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel neural network architecture for point cloud classification. Our key idea is to automatically transform the 3D unordered input data into a set of useful 2D depth images, and classify them by exploiting well performing image classification CNNs. We present new differentiable module designs to generate depth images from a point cloud. These modules can be combined with any network architecture for processing point clouds. We utilize them in combination with state-of-the-art classification networks, and get results competitive with the state of the art in point cloud classification. Furthermore, our architecture automatically produces informative images representing the input point cloud, which could be used for further applications such as point cloud visualization.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"62 1\",\"pages\":\"4176-4184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

提出了一种新的神经网络结构用于点云分类。我们的关键思想是将3D无序输入数据自动转换为一组有用的2D深度图像,并利用性能良好的图像分类cnn对其进行分类。我们提出了一种新的可微模块设计,用于从点云生成深度图像。这些模块可以与任何网络架构相结合来处理点云。我们将它们与最先进的分类网络相结合,并获得与最先进的点云分类相竞争的结果。此外,我们的架构自动生成表示输入点云的信息图像,这可以用于点云可视化等进一步的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Network Architecture for Point Cloud Classification via Automatic Depth Images Generation
We propose a novel neural network architecture for point cloud classification. Our key idea is to automatically transform the 3D unordered input data into a set of useful 2D depth images, and classify them by exploiting well performing image classification CNNs. We present new differentiable module designs to generate depth images from a point cloud. These modules can be combined with any network architecture for processing point clouds. We utilize them in combination with state-of-the-art classification networks, and get results competitive with the state of the art in point cloud classification. Furthermore, our architecture automatically produces informative images representing the input point cloud, which could be used for further applications such as point cloud visualization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信