$ \mathsf{VB} $-李代数群和$ \mathsf{VB} $-Courant代数群的分类

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Y. Sheng
{"title":"$ \\mathsf{VB} $-李代数群和$ \\mathsf{VB} $-Courant代数群的分类","authors":"Y. Sheng","doi":"10.3934/jgm.2023002","DOIUrl":null,"url":null,"abstract":"In this paper, first we introduce the notion of a $ \\mathsf{VB} $-Lie $ 2 $-algebroid, which can be viewed as the categorification of a $ \\mathsf{VB} $-Lie algebroid. The tangent prolongation of a Lie $ 2 $-algebroid is a $ \\mathsf{VB} $-Lie $ 2 $-algebroid naturally. We show that after choosing a splitting, there is a one-to-one correspondence between $ \\mathsf{VB} $-Lie $ 2 $-algebroids and flat superconnections of a Lie 2-algebroid on a 3-term complex of vector bundles. Then we introduce the notion of a $ \\mathsf{VB} $-$ \\mathsf{CLWX} $ 2-algebroid, which can be viewed as the categorification of a $ \\mathsf{VB} $-Courant algebroid. We show that there is a one-to-one correspondence between split Lie 3-algebroids and split $ \\mathsf{VB} $-$ \\mathsf{CLWX} $ 2-algebroids. Finally, we introduce the notion of an $ E $-$ \\mathsf{CLWX} $ 2-algebroid and show that associated to a $ \\mathsf{VB} $-$ \\mathsf{CLWX} $ 2-algebroid, there is an $ E $-$ \\mathsf{CLWX} $ 2-algebroid structure on the graded fat bundle naturally. By this result, we give a construction of a new Lie 3-algebra from a given Lie 3-algebra, which provides interesting examples of Lie 3-algebras including the higher analogue of the string Lie 2-algebra.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"7 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Categorification of $ \\\\mathsf{VB} $-Lie algebroids and $ \\\\mathsf{VB} $-Courant algebroids\",\"authors\":\"Y. Sheng\",\"doi\":\"10.3934/jgm.2023002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, first we introduce the notion of a $ \\\\mathsf{VB} $-Lie $ 2 $-algebroid, which can be viewed as the categorification of a $ \\\\mathsf{VB} $-Lie algebroid. The tangent prolongation of a Lie $ 2 $-algebroid is a $ \\\\mathsf{VB} $-Lie $ 2 $-algebroid naturally. We show that after choosing a splitting, there is a one-to-one correspondence between $ \\\\mathsf{VB} $-Lie $ 2 $-algebroids and flat superconnections of a Lie 2-algebroid on a 3-term complex of vector bundles. Then we introduce the notion of a $ \\\\mathsf{VB} $-$ \\\\mathsf{CLWX} $ 2-algebroid, which can be viewed as the categorification of a $ \\\\mathsf{VB} $-Courant algebroid. We show that there is a one-to-one correspondence between split Lie 3-algebroids and split $ \\\\mathsf{VB} $-$ \\\\mathsf{CLWX} $ 2-algebroids. Finally, we introduce the notion of an $ E $-$ \\\\mathsf{CLWX} $ 2-algebroid and show that associated to a $ \\\\mathsf{VB} $-$ \\\\mathsf{CLWX} $ 2-algebroid, there is an $ E $-$ \\\\mathsf{CLWX} $ 2-algebroid structure on the graded fat bundle naturally. By this result, we give a construction of a new Lie 3-algebra from a given Lie 3-algebra, which provides interesting examples of Lie 3-algebras including the higher analogue of the string Lie 2-algebra.\",\"PeriodicalId\":49161,\"journal\":{\"name\":\"Journal of Geometric Mechanics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jgm.2023002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2023002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文首先引入了$ \mathsf{VB} $-Lie $ 2 $-代数布的概念,它可以看作是$ \mathsf{VB} $-Lie代数布的分类。Lie $ 2 $-代数群的正切延伸自然是$ \mathsf{VB} $-Lie $ 2 $-代数群。我们证明了在选择一个分裂后,$ \mathsf{VB} $-Lie $ 2 $-代数群与Lie $ 2-代数群在3项向量束复上的平面超连接之间存在一一对应关系。然后我们引入了$ \mathsf{VB} $-$ \mathsf{CLWX} $ 2-代数元的概念,它可以看作是$ \mathsf{VB} $- courant代数元的分类。我们证明了分裂的李3-代数群与分裂的$ \mathsf{VB} $-$ \mathsf{CLWX} $ 2-代数群之间存在一一对应关系。最后,我们引入了$ E $-$ \mathsf{CLWX} $ 2-代数元的概念,并证明了与$ \mathsf{VB} $-$ \mathsf{CLWX} $ 2-代数元相关联的$ E $-$ \mathsf{CLWX} $ 2-代数元结构在梯度脂肪束上自然存在。利用这一结果,我们给出了一个新的李3代数的构造,它提供了李3代数的有趣的例子,包括字符串李2代数的高级模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Categorification of $ \mathsf{VB} $-Lie algebroids and $ \mathsf{VB} $-Courant algebroids
In this paper, first we introduce the notion of a $ \mathsf{VB} $-Lie $ 2 $-algebroid, which can be viewed as the categorification of a $ \mathsf{VB} $-Lie algebroid. The tangent prolongation of a Lie $ 2 $-algebroid is a $ \mathsf{VB} $-Lie $ 2 $-algebroid naturally. We show that after choosing a splitting, there is a one-to-one correspondence between $ \mathsf{VB} $-Lie $ 2 $-algebroids and flat superconnections of a Lie 2-algebroid on a 3-term complex of vector bundles. Then we introduce the notion of a $ \mathsf{VB} $-$ \mathsf{CLWX} $ 2-algebroid, which can be viewed as the categorification of a $ \mathsf{VB} $-Courant algebroid. We show that there is a one-to-one correspondence between split Lie 3-algebroids and split $ \mathsf{VB} $-$ \mathsf{CLWX} $ 2-algebroids. Finally, we introduce the notion of an $ E $-$ \mathsf{CLWX} $ 2-algebroid and show that associated to a $ \mathsf{VB} $-$ \mathsf{CLWX} $ 2-algebroid, there is an $ E $-$ \mathsf{CLWX} $ 2-algebroid structure on the graded fat bundle naturally. By this result, we give a construction of a new Lie 3-algebra from a given Lie 3-algebra, which provides interesting examples of Lie 3-algebras including the higher analogue of the string Lie 2-algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信