走向绿色润滑:废咖啡渣油的摩擦学行为和化学特性

IF 5.8 3区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jessica Pichler, Rosa Maria Eder, L. Widder, M. Varga, M. Marchetti‐Deschmann, M. Frauscher
{"title":"走向绿色润滑:废咖啡渣油的摩擦学行为和化学特性","authors":"Jessica Pichler, Rosa Maria Eder, L. Widder, M. Varga, M. Marchetti‐Deschmann, M. Frauscher","doi":"10.1080/17518253.2023.2215243","DOIUrl":null,"url":null,"abstract":"ABSTRACT With the EU aiming for net-zero greenhouse gas emissions by 2050, conventional production cycles must be transformed into cradle-to-cradle approaches. Spent coffee grounds are often dumped in landfills, with their potential as high-quality feedstock for biofuel or bio-lubricant production. Spent coffee grounds oil (SCGO) was investigated for its physicochemical properties while having more free acid groups compared to the reference polyalphaolefin 8 (PAO 8), which may cause faster oxidation. TGA results displayed comparable thermal stability of SCGO and PAO 8 for inert/oxidative atmosphere. The oil composition was characterized by ATR-FTIR, elemental analysis, and GC-EI-MS, where a higher oxygen content was found for SCGO, referring to functional ester/acid groups. The tribological behavior of SCGO was studied as lubricant base oil and as a 5% additive in PAO 8. The condition of fresh and tribologically used oils was investigated with High-Resolution-ESI-MS, and the worn surfaces were evaluated by light microscopy and topographic analysis. The results showed a superior friction coefficient of pure SCGO (µ = 0.092) to PAO 8 (µ = 0.129). The 5% SCGO additive in PAO 8 (µ = 0.095) could significantly reduce friction compared to pure PAO 8 on an unpolished 100Cr6 surface. GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"42 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moving towards green lubrication: tribological behavior and chemical characterization of spent coffee grounds oil\",\"authors\":\"Jessica Pichler, Rosa Maria Eder, L. Widder, M. Varga, M. Marchetti‐Deschmann, M. Frauscher\",\"doi\":\"10.1080/17518253.2023.2215243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT With the EU aiming for net-zero greenhouse gas emissions by 2050, conventional production cycles must be transformed into cradle-to-cradle approaches. Spent coffee grounds are often dumped in landfills, with their potential as high-quality feedstock for biofuel or bio-lubricant production. Spent coffee grounds oil (SCGO) was investigated for its physicochemical properties while having more free acid groups compared to the reference polyalphaolefin 8 (PAO 8), which may cause faster oxidation. TGA results displayed comparable thermal stability of SCGO and PAO 8 for inert/oxidative atmosphere. The oil composition was characterized by ATR-FTIR, elemental analysis, and GC-EI-MS, where a higher oxygen content was found for SCGO, referring to functional ester/acid groups. The tribological behavior of SCGO was studied as lubricant base oil and as a 5% additive in PAO 8. The condition of fresh and tribologically used oils was investigated with High-Resolution-ESI-MS, and the worn surfaces were evaluated by light microscopy and topographic analysis. The results showed a superior friction coefficient of pure SCGO (µ = 0.092) to PAO 8 (µ = 0.129). The 5% SCGO additive in PAO 8 (µ = 0.095) could significantly reduce friction compared to pure PAO 8 on an unpolished 100Cr6 surface. GRAPHICAL ABSTRACT\",\"PeriodicalId\":12768,\"journal\":{\"name\":\"Green Chemistry Letters and Reviews\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry Letters and Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/17518253.2023.2215243\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry Letters and Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/17518253.2023.2215243","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moving towards green lubrication: tribological behavior and chemical characterization of spent coffee grounds oil
ABSTRACT With the EU aiming for net-zero greenhouse gas emissions by 2050, conventional production cycles must be transformed into cradle-to-cradle approaches. Spent coffee grounds are often dumped in landfills, with their potential as high-quality feedstock for biofuel or bio-lubricant production. Spent coffee grounds oil (SCGO) was investigated for its physicochemical properties while having more free acid groups compared to the reference polyalphaolefin 8 (PAO 8), which may cause faster oxidation. TGA results displayed comparable thermal stability of SCGO and PAO 8 for inert/oxidative atmosphere. The oil composition was characterized by ATR-FTIR, elemental analysis, and GC-EI-MS, where a higher oxygen content was found for SCGO, referring to functional ester/acid groups. The tribological behavior of SCGO was studied as lubricant base oil and as a 5% additive in PAO 8. The condition of fresh and tribologically used oils was investigated with High-Resolution-ESI-MS, and the worn surfaces were evaluated by light microscopy and topographic analysis. The results showed a superior friction coefficient of pure SCGO (µ = 0.092) to PAO 8 (µ = 0.129). The 5% SCGO additive in PAO 8 (µ = 0.095) could significantly reduce friction compared to pure PAO 8 on an unpolished 100Cr6 surface. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry Letters and Reviews
Green Chemistry Letters and Reviews CHEMISTRY, MULTIDISCIPLINARY-GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
CiteScore
9.10
自引率
3.00%
发文量
48
期刊介绍: Green Chemistry Letters and Reviews is an Open Access, peer-reviewed journal focused on rapid publication of innovative new syntheses and procedures that reduce or eliminate the use and generation of hazardous materials. Reviews of state-of-the-art green chemistry technologies are also included within the journal''s scope. Green Chemistry Letters and Reviews is divided into three overlapping topic areas: research, education, and industrial implementation. The journal publishes both letters, which concisely communicate the most time-sensitive results, and reviews, which aid researchers in understanding the state of science on important green chemistry topics. Submissions are encouraged which apply the 12 principles of green chemistry to: -Green Chemistry Education- Synthetic Reaction Pathways- Research and Process Analytical Techniques- Separation and Purification Technologies- Renewable Feedstocks- Degradable Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信