Yiming Zhang , Junyong Zhu , Jingwei Hou , Shouliang Yi , Bart Van der Bruggen , Yatao Zhang
{"title":"碳酸酐酶膜用于碳捕获和储存","authors":"Yiming Zhang , Junyong Zhu , Jingwei Hou , Shouliang Yi , Bart Van der Bruggen , Yatao Zhang","doi":"10.1016/j.memlet.2022.100031","DOIUrl":null,"url":null,"abstract":"<div><p>Carbonic anhydrase (CA) based membranes with unique biological activities have been widely explored for carbon capture and storage (CCS), owing to their high efficiency, easy operation, low energy requirement, and environmental sustainability. However, limitations of CA enzymes, such as low thermal stabilities, narrow optimum pH ranges, and difficulties in recovery from reaction media, hinder its practical applications. Consequently, combining its enzymatic activity with membrane technologies for industrial uses is an attractive strategy. This current review explores a variety of immobilization approaches and summarizes the mechanistic features of enzymatic membranes in CO<sub>2</sub> capture. Immobilized enzymes can be recycled to reduce process costs and improve the CO<sub>2</sub> permeability and selectivity of the membranes. This makes enzymatic membranes attractive for CCS. The study also summarizes the structure, synthesis, and applications of a variety of CA analogues to demonstrate their advantages compared with natural CA. CA analogues hold promise for industrial and biomimetic applications.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421222000186/pdfft?md5=6fc827623716fb068c9ecfb1374dc5ef&pid=1-s2.0-S2772421222000186-main.pdf","citationCount":"4","resultStr":"{\"title\":\"Carbonic anhydrase membranes for carbon capture and storage\",\"authors\":\"Yiming Zhang , Junyong Zhu , Jingwei Hou , Shouliang Yi , Bart Van der Bruggen , Yatao Zhang\",\"doi\":\"10.1016/j.memlet.2022.100031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbonic anhydrase (CA) based membranes with unique biological activities have been widely explored for carbon capture and storage (CCS), owing to their high efficiency, easy operation, low energy requirement, and environmental sustainability. However, limitations of CA enzymes, such as low thermal stabilities, narrow optimum pH ranges, and difficulties in recovery from reaction media, hinder its practical applications. Consequently, combining its enzymatic activity with membrane technologies for industrial uses is an attractive strategy. This current review explores a variety of immobilization approaches and summarizes the mechanistic features of enzymatic membranes in CO<sub>2</sub> capture. Immobilized enzymes can be recycled to reduce process costs and improve the CO<sub>2</sub> permeability and selectivity of the membranes. This makes enzymatic membranes attractive for CCS. The study also summarizes the structure, synthesis, and applications of a variety of CA analogues to demonstrate their advantages compared with natural CA. CA analogues hold promise for industrial and biomimetic applications.</p></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772421222000186/pdfft?md5=6fc827623716fb068c9ecfb1374dc5ef&pid=1-s2.0-S2772421222000186-main.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772421222000186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421222000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Carbonic anhydrase membranes for carbon capture and storage
Carbonic anhydrase (CA) based membranes with unique biological activities have been widely explored for carbon capture and storage (CCS), owing to their high efficiency, easy operation, low energy requirement, and environmental sustainability. However, limitations of CA enzymes, such as low thermal stabilities, narrow optimum pH ranges, and difficulties in recovery from reaction media, hinder its practical applications. Consequently, combining its enzymatic activity with membrane technologies for industrial uses is an attractive strategy. This current review explores a variety of immobilization approaches and summarizes the mechanistic features of enzymatic membranes in CO2 capture. Immobilized enzymes can be recycled to reduce process costs and improve the CO2 permeability and selectivity of the membranes. This makes enzymatic membranes attractive for CCS. The study also summarizes the structure, synthesis, and applications of a variety of CA analogues to demonstrate their advantages compared with natural CA. CA analogues hold promise for industrial and biomimetic applications.