FASTA Herder:一个修剪蛋白质序列集的web应用程序

M. Andrade, Caroline Louis-Jeune, C. Perez-Iratxeta
{"title":"FASTA Herder:一个修剪蛋白质序列集的web应用程序","authors":"M. Andrade, Caroline Louis-Jeune, C. Perez-Iratxeta","doi":"10.14293/S2199-1006.1.SOR-LIFE.A67837.V2","DOIUrl":null,"url":null,"abstract":"Abstract\nThe ever increasing number of sequences in protein databases usually turns out large numbers of homologs in sequence similarity searches. While information from homology can be very useful for functional prediction based on amino acid conservation, many of these homologs usually have high levels of identity among themselves, which hinders multiple sequence alignment computation and, especially, visualization. More generally, high redundancy reduces the usability of a protein set in machine learning applications and biases statistical analyses. We developed an algorithm to identify redundant sequence homologs that can be culled producing a streamlined FASTA file. As a difference from other automatic approaches that only aggregate sequences with high identity, our method clusters near-full length homologs allowing for lower sequence identity thresholds. Our method was fully tested and implemented in a web application called FASTA Herder, publicly available at http://fh.ogic.ca/.","PeriodicalId":91169,"journal":{"name":"ScienceOpen research","volume":"138 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"FASTA Herder: a web application to trim protein sequence sets\",\"authors\":\"M. Andrade, Caroline Louis-Jeune, C. Perez-Iratxeta\",\"doi\":\"10.14293/S2199-1006.1.SOR-LIFE.A67837.V2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract\\nThe ever increasing number of sequences in protein databases usually turns out large numbers of homologs in sequence similarity searches. While information from homology can be very useful for functional prediction based on amino acid conservation, many of these homologs usually have high levels of identity among themselves, which hinders multiple sequence alignment computation and, especially, visualization. More generally, high redundancy reduces the usability of a protein set in machine learning applications and biases statistical analyses. We developed an algorithm to identify redundant sequence homologs that can be culled producing a streamlined FASTA file. As a difference from other automatic approaches that only aggregate sequences with high identity, our method clusters near-full length homologs allowing for lower sequence identity thresholds. Our method was fully tested and implemented in a web application called FASTA Herder, publicly available at http://fh.ogic.ca/.\",\"PeriodicalId\":91169,\"journal\":{\"name\":\"ScienceOpen research\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ScienceOpen research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14293/S2199-1006.1.SOR-LIFE.A67837.V2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ScienceOpen research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14293/S2199-1006.1.SOR-LIFE.A67837.V2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要随着蛋白质数据库中序列数量的不断增加,在序列相似性搜索中往往会发现大量的同源序列。虽然同源性信息对基于氨基酸保守的功能预测非常有用,但许多同源性通常具有高度同一性,这阻碍了多序列比对计算,特别是可视化。更普遍的是,高冗余降低了机器学习应用中蛋白质集的可用性,并影响了统计分析。我们开发了一种算法来识别冗余序列同源物,可以剔除产生流线型FASTA文件。与其他仅聚合具有高同一性的序列的自动方法不同,我们的方法聚类接近全长的同源物,从而允许较低的序列同一性阈值。我们的方法在一个名为FASTA Herder的web应用程序中进行了全面测试和实现,该应用程序可在http://fh.ogic.ca/上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FASTA Herder: a web application to trim protein sequence sets
Abstract The ever increasing number of sequences in protein databases usually turns out large numbers of homologs in sequence similarity searches. While information from homology can be very useful for functional prediction based on amino acid conservation, many of these homologs usually have high levels of identity among themselves, which hinders multiple sequence alignment computation and, especially, visualization. More generally, high redundancy reduces the usability of a protein set in machine learning applications and biases statistical analyses. We developed an algorithm to identify redundant sequence homologs that can be culled producing a streamlined FASTA file. As a difference from other automatic approaches that only aggregate sequences with high identity, our method clusters near-full length homologs allowing for lower sequence identity thresholds. Our method was fully tested and implemented in a web application called FASTA Herder, publicly available at http://fh.ogic.ca/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
1 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信