估算热力动力循环效率的半经验模型的发展

Decis. Sci. Pub Date : 2023-08-24 DOI:10.3390/sci5030033
Evangelos Bellos
{"title":"估算热力动力循环效率的半经验模型的发展","authors":"Evangelos Bellos","doi":"10.3390/sci5030033","DOIUrl":null,"url":null,"abstract":"Power plants constitute the main sources of electricity production, and the calculation of their efficiency is a critical factor that is needed in energy studies. The efficiency improvement of power plants through the optimization of the cycle is a critical means of reducing fuel consumption and leading to more sustainable designs. The goal of the present work is the development of semi-empirical models for estimating the thermodynamic efficiency of power cycles. The developed model uses only the lower and the high operating temperature levels, which makes it flexible and easily applicable. The final expression is found by using the literature data for different power cycles, named as: organic Rankine cycles, water-steam Rankine cycles, gas turbines, combined cycles and Stirling engines. According to the results, the real operation of the different cases was found to be a bit lower compared to the respective endoreversible cycle. Specifically, the present global model indicates that the thermodynamic efficiency is a function of the temperature ratio (low cycle temperature to high cycle temperature). The suggested equation can be exploited as a quick and accurate tool for calculating the thermodynamic efficiency of power plants by using the operating temperature levels. Moreover, separate equations are provided for all of the examined thermodynamic cycles.","PeriodicalId":10987,"journal":{"name":"Decis. Sci.","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Semi-Empirical Model for Estimating the Efficiency of Thermodynamic Power Cycles\",\"authors\":\"Evangelos Bellos\",\"doi\":\"10.3390/sci5030033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power plants constitute the main sources of electricity production, and the calculation of their efficiency is a critical factor that is needed in energy studies. The efficiency improvement of power plants through the optimization of the cycle is a critical means of reducing fuel consumption and leading to more sustainable designs. The goal of the present work is the development of semi-empirical models for estimating the thermodynamic efficiency of power cycles. The developed model uses only the lower and the high operating temperature levels, which makes it flexible and easily applicable. The final expression is found by using the literature data for different power cycles, named as: organic Rankine cycles, water-steam Rankine cycles, gas turbines, combined cycles and Stirling engines. According to the results, the real operation of the different cases was found to be a bit lower compared to the respective endoreversible cycle. Specifically, the present global model indicates that the thermodynamic efficiency is a function of the temperature ratio (low cycle temperature to high cycle temperature). The suggested equation can be exploited as a quick and accurate tool for calculating the thermodynamic efficiency of power plants by using the operating temperature levels. Moreover, separate equations are provided for all of the examined thermodynamic cycles.\",\"PeriodicalId\":10987,\"journal\":{\"name\":\"Decis. Sci.\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decis. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sci5030033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decis. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sci5030033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发电厂是电力生产的主要来源,其效率的计算是能源研究中需要考虑的一个关键因素。通过优化循环来提高电厂的效率是降低燃料消耗和实现更可持续设计的关键手段。本工作的目标是开发半经验模型来估计动力循环的热力学效率。所开发的模型仅使用较低和较高的工作温度水平,这使得它灵活且易于应用。利用文献数据得到了不同动力循环的最终表达式,分别为:有机朗肯循环、水-蒸汽朗肯循环、燃气轮机、联合循环和斯特林发动机。根据结果,发现不同情况下的实际操作比各自的内可逆循环要低一些。具体来说,目前的全球模式表明热力学效率是温度比(低循环温度与高循环温度)的函数。该方程可作为利用运行温度水平计算电厂热力效率的快速而准确的工具。此外,还为所研究的所有热力学循环提供了单独的方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Semi-Empirical Model for Estimating the Efficiency of Thermodynamic Power Cycles
Power plants constitute the main sources of electricity production, and the calculation of their efficiency is a critical factor that is needed in energy studies. The efficiency improvement of power plants through the optimization of the cycle is a critical means of reducing fuel consumption and leading to more sustainable designs. The goal of the present work is the development of semi-empirical models for estimating the thermodynamic efficiency of power cycles. The developed model uses only the lower and the high operating temperature levels, which makes it flexible and easily applicable. The final expression is found by using the literature data for different power cycles, named as: organic Rankine cycles, water-steam Rankine cycles, gas turbines, combined cycles and Stirling engines. According to the results, the real operation of the different cases was found to be a bit lower compared to the respective endoreversible cycle. Specifically, the present global model indicates that the thermodynamic efficiency is a function of the temperature ratio (low cycle temperature to high cycle temperature). The suggested equation can be exploited as a quick and accurate tool for calculating the thermodynamic efficiency of power plants by using the operating temperature levels. Moreover, separate equations are provided for all of the examined thermodynamic cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信