基于深度学习的卫星图像语义分割

Chandra Pal Kushwah, Kuruna Markam
{"title":"基于深度学习的卫星图像语义分割","authors":"Chandra Pal Kushwah, Kuruna Markam","doi":"10.35940/ijitee.h9186.0610821","DOIUrl":null,"url":null,"abstract":"Bidirectional in recent years, Deep learning performance in natural scene image processing has improved its use in remote sensing image analysis. In this paper, we used the semantic segmentation of remote sensing images for deep neural networks (DNN). To make it ideal for multi-target semantic segmentation of remote sensing image systems, we boost the Seg Net encoder-decoder CNN structures with index pooling & U-net. The findings reveal that the segmentation of various objects has its benefits and drawbacks for both models. Furthermore, we provide an integrated algorithm that incorporates two models. The test results indicate that the integrated algorithm proposed will take advantage of all multi-target segmentation models and obtain improved segmentation relative to two models.","PeriodicalId":23601,"journal":{"name":"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Semantic Segmentation of Satellite Images using Deep Learning\",\"authors\":\"Chandra Pal Kushwah, Kuruna Markam\",\"doi\":\"10.35940/ijitee.h9186.0610821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bidirectional in recent years, Deep learning performance in natural scene image processing has improved its use in remote sensing image analysis. In this paper, we used the semantic segmentation of remote sensing images for deep neural networks (DNN). To make it ideal for multi-target semantic segmentation of remote sensing image systems, we boost the Seg Net encoder-decoder CNN structures with index pooling & U-net. The findings reveal that the segmentation of various objects has its benefits and drawbacks for both models. Furthermore, we provide an integrated algorithm that incorporates two models. The test results indicate that the integrated algorithm proposed will take advantage of all multi-target segmentation models and obtain improved segmentation relative to two models.\",\"PeriodicalId\":23601,\"journal\":{\"name\":\"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35940/ijitee.h9186.0610821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijitee.h9186.0610821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

近年来,深度学习在自然场景图像处理中的双向性能提高了其在遥感图像分析中的应用。本文将遥感图像的语义分割用于深度神经网络(DNN)。为了使其适合遥感图像系统的多目标语义分割,我们用索引池和U-net增强了Seg网编码器-解码器CNN结构。研究结果表明,两种模型对不同目标的分割各有优缺点。此外,我们还提供了一个集成了两个模型的算法。测试结果表明,所提出的综合算法能够充分利用所有的多目标分割模型,获得相对于两种模型更好的分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Segmentation of Satellite Images using Deep Learning
Bidirectional in recent years, Deep learning performance in natural scene image processing has improved its use in remote sensing image analysis. In this paper, we used the semantic segmentation of remote sensing images for deep neural networks (DNN). To make it ideal for multi-target semantic segmentation of remote sensing image systems, we boost the Seg Net encoder-decoder CNN structures with index pooling & U-net. The findings reveal that the segmentation of various objects has its benefits and drawbacks for both models. Furthermore, we provide an integrated algorithm that incorporates two models. The test results indicate that the integrated algorithm proposed will take advantage of all multi-target segmentation models and obtain improved segmentation relative to two models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信