库霉素A1对伊氏杆菌和巴贝斯虫体外和体内生长抑制作用的评价

M. AbouLaila
{"title":"库霉素A1对伊氏杆菌和巴贝斯虫体外和体内生长抑制作用的评价","authors":"M. AbouLaila","doi":"10.29261/pakvetj/2021.064","DOIUrl":null,"url":null,"abstract":"Coumermycin A1, a coumarin antibiotic, has anticancer, antibacterial, antiviral, and antimalarial activities. We aimed to evaluate the anti-thielerial and anti-babesial activity of coumermycin A1 in mice in vivo. Coumermycin A1 efficacy was determined by the transcription of DNA gyrase, a type II DNA topoisomerase using reverse transcriptase-polymerase chain reaction (RT-PCR) transcription. Coumermycin A1 significantly inhibited the development of preliminary parasitemia (1%). Theileria equi and the Babesia species B. bigemina, B. bovis, and B. caballi were observed with IC50 values of 80, 70, 57, and 65 nM, respectively. Their development was remarkably inhibited at observed concentrations of 10, 25, 50, and 100µM for the studied organisms T. equi, and the Babesia species B. caballi, B. bovis and B. bigemina, respectively. In the subsequent viability test, parasite re-growth was suppressed at 100µM for B. bigemina and B. bovis and at 50 µM for B. caballi and T. equi. Coumermycin A1 Treatment of B. bovis cultures with Coumermycin A1 completely suppressed the transcription of the DNA gyrase subunits B and A genes. In BALB/c mice, the development of Babesia microti was inhibited by 70.73% using 5 mg/kg of Coumermycin A1.","PeriodicalId":22797,"journal":{"name":"The Pakistan Veterinary Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evaluation of the Inhibitory Effects of Coumermycin A1 on the Growth of Theileria and Babesia Parasites in vitro and in vivo\",\"authors\":\"M. AbouLaila\",\"doi\":\"10.29261/pakvetj/2021.064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coumermycin A1, a coumarin antibiotic, has anticancer, antibacterial, antiviral, and antimalarial activities. We aimed to evaluate the anti-thielerial and anti-babesial activity of coumermycin A1 in mice in vivo. Coumermycin A1 efficacy was determined by the transcription of DNA gyrase, a type II DNA topoisomerase using reverse transcriptase-polymerase chain reaction (RT-PCR) transcription. Coumermycin A1 significantly inhibited the development of preliminary parasitemia (1%). Theileria equi and the Babesia species B. bigemina, B. bovis, and B. caballi were observed with IC50 values of 80, 70, 57, and 65 nM, respectively. Their development was remarkably inhibited at observed concentrations of 10, 25, 50, and 100µM for the studied organisms T. equi, and the Babesia species B. caballi, B. bovis and B. bigemina, respectively. In the subsequent viability test, parasite re-growth was suppressed at 100µM for B. bigemina and B. bovis and at 50 µM for B. caballi and T. equi. Coumermycin A1 Treatment of B. bovis cultures with Coumermycin A1 completely suppressed the transcription of the DNA gyrase subunits B and A genes. In BALB/c mice, the development of Babesia microti was inhibited by 70.73% using 5 mg/kg of Coumermycin A1.\",\"PeriodicalId\":22797,\"journal\":{\"name\":\"The Pakistan Veterinary Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Pakistan Veterinary Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29261/pakvetj/2021.064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Pakistan Veterinary Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29261/pakvetj/2021.064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Coumermycin A1是一种香豆素类抗生素,具有抗癌、抗菌、抗病毒和抗疟活性。目的是在小鼠体内评价库默霉素A1的抗线虫和抗巴贝虫活性。采用逆转录-聚合酶链式反应(RT-PCR)转录DNA回转酶(一种II型DNA拓扑异构酶)来确定库默霉素A1的疗效。库默霉素A1显著抑制了前期寄生虫病的发生(1%)。马氏巴贝斯虫、双头巴贝斯虫、牛巴贝斯虫和caballi巴贝斯虫的IC50值分别为80、70、57和65 nM。在10、25、50和100µM的浓度下,马氏弓形虫和巴贝斯虫caballi、B. bovis和B. bigemina的发育受到显著抑制。在随后的活力测试中,在100µM条件下,B. bigemina和B. bovis以及50µM条件下,B. caballi和T. equi的再生长受到抑制。用库默霉素A1处理牛牛B培养物完全抑制DNA旋切酶亚基B和A基因的转录。在BALB/c小鼠中,5 mg/kg的库默霉素A1对微小巴贝斯虫的抑制作用为70.73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of the Inhibitory Effects of Coumermycin A1 on the Growth of Theileria and Babesia Parasites in vitro and in vivo
Coumermycin A1, a coumarin antibiotic, has anticancer, antibacterial, antiviral, and antimalarial activities. We aimed to evaluate the anti-thielerial and anti-babesial activity of coumermycin A1 in mice in vivo. Coumermycin A1 efficacy was determined by the transcription of DNA gyrase, a type II DNA topoisomerase using reverse transcriptase-polymerase chain reaction (RT-PCR) transcription. Coumermycin A1 significantly inhibited the development of preliminary parasitemia (1%). Theileria equi and the Babesia species B. bigemina, B. bovis, and B. caballi were observed with IC50 values of 80, 70, 57, and 65 nM, respectively. Their development was remarkably inhibited at observed concentrations of 10, 25, 50, and 100µM for the studied organisms T. equi, and the Babesia species B. caballi, B. bovis and B. bigemina, respectively. In the subsequent viability test, parasite re-growth was suppressed at 100µM for B. bigemina and B. bovis and at 50 µM for B. caballi and T. equi. Coumermycin A1 Treatment of B. bovis cultures with Coumermycin A1 completely suppressed the transcription of the DNA gyrase subunits B and A genes. In BALB/c mice, the development of Babesia microti was inhibited by 70.73% using 5 mg/kg of Coumermycin A1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信