用于可穿戴电子器件的增强型PVDF静电纺纳米纤维电容式压力传感器

Romana Daňová, Venkata Dinesh Avvari, R. Olejník, P. Slobodian, J. Matyáš, D. Kimmer
{"title":"用于可穿戴电子器件的增强型PVDF静电纺纳米纤维电容式压力传感器","authors":"Romana Daňová, Venkata Dinesh Avvari, R. Olejník, P. Slobodian, J. Matyáš, D. Kimmer","doi":"10.1109/NEMS50311.2020.9265563","DOIUrl":null,"url":null,"abstract":"Two different types of nanofibers were prepared by electrospinning, namely poly-(vinylidene fluoride) PVDF and PVDF/TiO2. The prepared nanofibers have piezoelectric properties, which are characterized by the content of ß-phase. Another way to improve the piezoelectric properties is to use TiO2 nanoparticles, which increases the piezoelectric effect. Piezoelectric effect is strongly connected with capacitive properties which was investigated in this work. Capacitive sensor with a sandwich structure consisting of EVA foam as a cover, conductive copper fabric and nanofibers was prepared. The sensor is light-weight, flexible with the possibility of using for wearable electronics. We can therefore determine the maximum pressure at individual points of the foot, the course of its values, the method of pressure distribution throughout the foot. We can find use not only in research on walking, running and postures, but also, provide information on the magnitude of the applied force over time. The force converted to the selected sensor area is then pressure information.","PeriodicalId":6787,"journal":{"name":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)","volume":"23 1","pages":"115-119"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced PVDF Electrospun Nanofiber Capacitive Pressure Sensor for Wearable Electronic\",\"authors\":\"Romana Daňová, Venkata Dinesh Avvari, R. Olejník, P. Slobodian, J. Matyáš, D. Kimmer\",\"doi\":\"10.1109/NEMS50311.2020.9265563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two different types of nanofibers were prepared by electrospinning, namely poly-(vinylidene fluoride) PVDF and PVDF/TiO2. The prepared nanofibers have piezoelectric properties, which are characterized by the content of ß-phase. Another way to improve the piezoelectric properties is to use TiO2 nanoparticles, which increases the piezoelectric effect. Piezoelectric effect is strongly connected with capacitive properties which was investigated in this work. Capacitive sensor with a sandwich structure consisting of EVA foam as a cover, conductive copper fabric and nanofibers was prepared. The sensor is light-weight, flexible with the possibility of using for wearable electronics. We can therefore determine the maximum pressure at individual points of the foot, the course of its values, the method of pressure distribution throughout the foot. We can find use not only in research on walking, running and postures, but also, provide information on the magnitude of the applied force over time. The force converted to the selected sensor area is then pressure information.\",\"PeriodicalId\":6787,\"journal\":{\"name\":\"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)\",\"volume\":\"23 1\",\"pages\":\"115-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS50311.2020.9265563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS50311.2020.9265563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用静电纺丝法制备了聚偏氟乙烯(PVDF)和PVDF/TiO2两种不同类型的纳米纤维。制备的纳米纤维具有压电性能,其特征是ß-相的含量。另一种改善压电性能的方法是使用TiO2纳米颗粒,这可以增加压电效应。压电效应与电容特性密切相关。制备了以EVA泡沫为外罩,导电铜织物和纳米纤维组成的夹层结构的电容式传感器。该传感器重量轻,灵活,可用于可穿戴电子产品。因此,我们可以确定足部各个点的最大压力,其值的变化过程,以及整个足部压力分布的方法。我们不仅可以在走路,跑步和姿势的研究中找到用途,而且还可以提供随时间施加的力的大小的信息。转换到选定传感器区域的力就是压力信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced PVDF Electrospun Nanofiber Capacitive Pressure Sensor for Wearable Electronic
Two different types of nanofibers were prepared by electrospinning, namely poly-(vinylidene fluoride) PVDF and PVDF/TiO2. The prepared nanofibers have piezoelectric properties, which are characterized by the content of ß-phase. Another way to improve the piezoelectric properties is to use TiO2 nanoparticles, which increases the piezoelectric effect. Piezoelectric effect is strongly connected with capacitive properties which was investigated in this work. Capacitive sensor with a sandwich structure consisting of EVA foam as a cover, conductive copper fabric and nanofibers was prepared. The sensor is light-weight, flexible with the possibility of using for wearable electronics. We can therefore determine the maximum pressure at individual points of the foot, the course of its values, the method of pressure distribution throughout the foot. We can find use not only in research on walking, running and postures, but also, provide information on the magnitude of the applied force over time. The force converted to the selected sensor area is then pressure information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信