С.А. Ложкин, S. A. Lozhkin, Вадим Сергеевич Зизов, Vadim Sergeevich Zizov
{"title":"细胞电路模型中多路器面积的渐近精确估计","authors":"С.А. Ложкин, S. A. Lozhkin, Вадим Сергеевич Зизов, Vadim Sergeevich Zizov","doi":"10.4213/dm1712","DOIUrl":null,"url":null,"abstract":"В общем случае клеточная схема из функциональных и коммутационных элементов (КСФКЭ) представляет собой математическую модель интегральных схем (ИС), которая учитывает особенности их физического синтеза. Принципиальным отличием этой модели от хорошо изученных классов схем из функциональных элементов (СФЭ) является наличие дополнительных требований на геометрию схемы, которые обеспечивают учет необходимых трассировочных ресурсов при создании ИС. Предметом изучения многих авторов стала сложность реализации мультиплексорной функции алгебры логики (ФАЛ) в различных классах схем. В настоящей работе устанавливаются асимптотически точные верхние и нижние оценки площади КСФКЭ, реализующей мультиплексорную ФАЛ порядка $n$. Конструктивно построено семейство схемных мультиплексоров порядка $n$ с площадью, равной верхней оценке, и предложен метод получения соответствующей нижней оценки.","PeriodicalId":42607,"journal":{"name":"Prikladnaya Diskretnaya Matematika","volume":"57 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Асимптотически точные оценки для площади мультиплексоров в модели клеточных схем\",\"authors\":\"С.А. Ложкин, S. A. Lozhkin, Вадим Сергеевич Зизов, Vadim Sergeevich Zizov\",\"doi\":\"10.4213/dm1712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"В общем случае клеточная схема из функциональных и коммутационных элементов (КСФКЭ) представляет собой математическую модель интегральных схем (ИС), которая учитывает особенности их физического синтеза. Принципиальным отличием этой модели от хорошо изученных классов схем из функциональных элементов (СФЭ) является наличие дополнительных требований на геометрию схемы, которые обеспечивают учет необходимых трассировочных ресурсов при создании ИС. Предметом изучения многих авторов стала сложность реализации мультиплексорной функции алгебры логики (ФАЛ) в различных классах схем. В настоящей работе устанавливаются асимптотически точные верхние и нижние оценки площади КСФКЭ, реализующей мультиплексорную ФАЛ порядка $n$. Конструктивно построено семейство схемных мультиплексоров порядка $n$ с площадью, равной верхней оценке, и предложен метод получения соответствующей нижней оценки.\",\"PeriodicalId\":42607,\"journal\":{\"name\":\"Prikladnaya Diskretnaya Matematika\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prikladnaya Diskretnaya Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/dm1712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaya Diskretnaya Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/dm1712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Асимптотически точные оценки для площади мультиплексоров в модели клеточных схем
В общем случае клеточная схема из функциональных и коммутационных элементов (КСФКЭ) представляет собой математическую модель интегральных схем (ИС), которая учитывает особенности их физического синтеза. Принципиальным отличием этой модели от хорошо изученных классов схем из функциональных элементов (СФЭ) является наличие дополнительных требований на геометрию схемы, которые обеспечивают учет необходимых трассировочных ресурсов при создании ИС. Предметом изучения многих авторов стала сложность реализации мультиплексорной функции алгебры логики (ФАЛ) в различных классах схем. В настоящей работе устанавливаются асимптотически точные верхние и нижние оценки площади КСФКЭ, реализующей мультиплексорную ФАЛ порядка $n$. Конструктивно построено семейство схемных мультиплексоров порядка $n$ с площадью, равной верхней оценке, и предложен метод получения соответствующей нижней оценки.
期刊介绍:
The scientific journal Prikladnaya Diskretnaya Matematika has been issued since 2008. It was registered by Federal Control Service in the Sphere of Communications and Mass Media (Registration Witness PI № FS 77-33762 in October 16th, in 2008). Prikladnaya Diskretnaya Matematika has been selected for coverage in Clarivate Analytics products and services. It is indexed and abstracted in SCOPUS and WoS Core Collection (Emerging Sources Citation Index). The journal is a quarterly. All the papers to be published in it are obligatorily verified by one or two specialists. The publication in the journal is free of charge and may be in Russian or in English. The topics of the journal are the following: 1.theoretical foundations of applied discrete mathematics – algebraic structures, discrete functions, combinatorial analysis, number theory, mathematical logic, information theory, systems of equations over finite fields and rings; 2.mathematical methods in cryptography – synthesis of cryptosystems, methods for cryptanalysis, pseudorandom generators, appreciation of cryptosystem security, cryptographic protocols, mathematical methods in quantum cryptography; 3.mathematical methods in steganography – synthesis of steganosystems, methods for steganoanalysis, appreciation of steganosystem security; 4.mathematical foundations of computer security – mathematical models for computer system security, mathematical methods for the analysis of the computer system security, mathematical methods for the synthesis of protected computer systems;[...]