{"title":"切削过程条件听觉感知在数控加工中的作用研究","authors":"K. Jarosz, Yunbo Zhang, R. Liu","doi":"10.1115/msec2022-85804","DOIUrl":null,"url":null,"abstract":"\n In the era of Industry 4.0, the machining sound has been extensively adopted in tool condition monitoring systems, virtual machining environment, and remote machining solutions. However, only limited attention has been paid to understand how experienced machinists detect tool wear and improper cutting conditions based on their hearing in the real machining environment. This paper aims to experimentally investigate and analyze the auditory perception of CNC operators during the cutting process and their capabilities of detecting unfavorable cutting conditions and faults using their sense of hearing and expertise. The sound in the machining environment was analyzed in the aspect of sound pressure levels (SPL). Optimal positions for sound sample acquisition were determined and audio data was recorded for future analysis. Experimental cutting tests with simulated process faults were conducted, where machinists with varying degrees of experience observed the process, listened to the machining sound and tried to determine whether cutting conditions were normal or if faults occurred. The primary research goal was to analyze how well operators can monitor the process using their various senses and to investigate the role of sound and auditory perceptions of trained professionals in cutting process supervision and monitoring. SPL measurements have shown that the sound pressure varies substantially in the machining environment, which is expected to affect the quality and volume of recorded machining sound depending on microphone positioning. Cutting tests have shown that the machinists use various senses to determine faults in the process, relying most significantly on auditory stimuli, with other factors, such as vibrations or visual examination of the workpiece having a secondary effect in the assessment of cutting process conditions and outcomes.","PeriodicalId":23676,"journal":{"name":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigating the Role of Auditory Perception of Cutting Process Conditions in CNC Machining\",\"authors\":\"K. Jarosz, Yunbo Zhang, R. Liu\",\"doi\":\"10.1115/msec2022-85804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the era of Industry 4.0, the machining sound has been extensively adopted in tool condition monitoring systems, virtual machining environment, and remote machining solutions. However, only limited attention has been paid to understand how experienced machinists detect tool wear and improper cutting conditions based on their hearing in the real machining environment. This paper aims to experimentally investigate and analyze the auditory perception of CNC operators during the cutting process and their capabilities of detecting unfavorable cutting conditions and faults using their sense of hearing and expertise. The sound in the machining environment was analyzed in the aspect of sound pressure levels (SPL). Optimal positions for sound sample acquisition were determined and audio data was recorded for future analysis. Experimental cutting tests with simulated process faults were conducted, where machinists with varying degrees of experience observed the process, listened to the machining sound and tried to determine whether cutting conditions were normal or if faults occurred. The primary research goal was to analyze how well operators can monitor the process using their various senses and to investigate the role of sound and auditory perceptions of trained professionals in cutting process supervision and monitoring. SPL measurements have shown that the sound pressure varies substantially in the machining environment, which is expected to affect the quality and volume of recorded machining sound depending on microphone positioning. Cutting tests have shown that the machinists use various senses to determine faults in the process, relying most significantly on auditory stimuli, with other factors, such as vibrations or visual examination of the workpiece having a secondary effect in the assessment of cutting process conditions and outcomes.\",\"PeriodicalId\":23676,\"journal\":{\"name\":\"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating the Role of Auditory Perception of Cutting Process Conditions in CNC Machining
In the era of Industry 4.0, the machining sound has been extensively adopted in tool condition monitoring systems, virtual machining environment, and remote machining solutions. However, only limited attention has been paid to understand how experienced machinists detect tool wear and improper cutting conditions based on their hearing in the real machining environment. This paper aims to experimentally investigate and analyze the auditory perception of CNC operators during the cutting process and their capabilities of detecting unfavorable cutting conditions and faults using their sense of hearing and expertise. The sound in the machining environment was analyzed in the aspect of sound pressure levels (SPL). Optimal positions for sound sample acquisition were determined and audio data was recorded for future analysis. Experimental cutting tests with simulated process faults were conducted, where machinists with varying degrees of experience observed the process, listened to the machining sound and tried to determine whether cutting conditions were normal or if faults occurred. The primary research goal was to analyze how well operators can monitor the process using their various senses and to investigate the role of sound and auditory perceptions of trained professionals in cutting process supervision and monitoring. SPL measurements have shown that the sound pressure varies substantially in the machining environment, which is expected to affect the quality and volume of recorded machining sound depending on microphone positioning. Cutting tests have shown that the machinists use various senses to determine faults in the process, relying most significantly on auditory stimuli, with other factors, such as vibrations or visual examination of the workpiece having a secondary effect in the assessment of cutting process conditions and outcomes.