基于聚类移动的线性时间复杂度k-均值算法

M. K. Pakhira
{"title":"基于聚类移动的线性时间复杂度k-均值算法","authors":"M. K. Pakhira","doi":"10.1109/CICN.2014.220","DOIUrl":null,"url":null,"abstract":"The k-means algorithm is known to have a time complexity of O(n2), where n is the input data size. This quadratic complexity debars the algorithm from being effectively used in large applications. In this article, an attempt is made to develop an O(n) complexity (linear order) counterpart of the k-means. The underlying modification includes a directional movement of intermediate clusters and thereby improves compactness and separability properties of cluster structures simultaneously. This process also results in an improved visualization of clustered data. Comparison of results obtained with the classical k-means and the present algorithm indicates usefulness of the new approach.","PeriodicalId":6487,"journal":{"name":"2014 International Conference on Computational Intelligence and Communication Networks","volume":"2 1","pages":"1047-1051"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":"{\"title\":\"A Linear Time-Complexity k-Means Algorithm Using Cluster Shifting\",\"authors\":\"M. K. Pakhira\",\"doi\":\"10.1109/CICN.2014.220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The k-means algorithm is known to have a time complexity of O(n2), where n is the input data size. This quadratic complexity debars the algorithm from being effectively used in large applications. In this article, an attempt is made to develop an O(n) complexity (linear order) counterpart of the k-means. The underlying modification includes a directional movement of intermediate clusters and thereby improves compactness and separability properties of cluster structures simultaneously. This process also results in an improved visualization of clustered data. Comparison of results obtained with the classical k-means and the present algorithm indicates usefulness of the new approach.\",\"PeriodicalId\":6487,\"journal\":{\"name\":\"2014 International Conference on Computational Intelligence and Communication Networks\",\"volume\":\"2 1\",\"pages\":\"1047-1051\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Computational Intelligence and Communication Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN.2014.220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computational Intelligence and Communication Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2014.220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

摘要

已知k-means算法的时间复杂度为O(n2),其中n为输入数据大小。这种二次复杂度阻碍了该算法在大型应用程序中的有效使用。在本文中,我们尝试开发一个复杂度为O(n)(线性阶)的k-means对应。所述修饰包括中间团簇的定向移动,从而同时改善团簇结构的致密性和可分离性。这个过程还可以改善聚集数据的可视化。与经典k-means算法和本算法的结果比较表明了新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Linear Time-Complexity k-Means Algorithm Using Cluster Shifting
The k-means algorithm is known to have a time complexity of O(n2), where n is the input data size. This quadratic complexity debars the algorithm from being effectively used in large applications. In this article, an attempt is made to develop an O(n) complexity (linear order) counterpart of the k-means. The underlying modification includes a directional movement of intermediate clusters and thereby improves compactness and separability properties of cluster structures simultaneously. This process also results in an improved visualization of clustered data. Comparison of results obtained with the classical k-means and the present algorithm indicates usefulness of the new approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信