穿心莲植物化合物作为抗病毒药物治疗COVID-19的计算机潜力:系统综述

Q2 Pharmacology, Toxicology and Pharmaceutics
Shafa Shavira, S. Handayani, Fatmaria Fatmaria
{"title":"穿心莲植物化合物作为抗病毒药物治疗COVID-19的计算机潜力:系统综述","authors":"Shafa Shavira, S. Handayani, Fatmaria Fatmaria","doi":"10.7324/japs.2023.133107","DOIUrl":null,"url":null,"abstract":"Since the outbreak of coronavirus disease 2019 (COVID-19), many studies have been conducted to develop definitive therapeutic agents for this viral disease. The in-silico method has become the best solution for the initial step in discovering potential antiviral compounds. Several phytocompounds from a medicinal plant, Andrographis paniculata , were reported to have activity inhibiting SARS-CoV-2 proteins. The present systematic review aims to determine the potency of A. paniculata compounds against COVID-19. We undertook a systematic search in two databases, PubMed and Google Scholar, and included original articles that applied in-silico methods for phytocompounds of A. paniculata in COVID-19. Twenty-nine original articles were included in the systematic review. We report that 50 of the 107 A. paniculata phytocompounds (46.73%) were against SARS-CoV-2. We found that five protein targets of SARS-CoV-2 are highly conserved structures mostly used in the articles, which are main protease, papain-like protease, RNA-dependent RNA polymerase","PeriodicalId":15126,"journal":{"name":"journal of applied pharmaceutical science","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The in-silico potential of Andrographis paniculata phytocompounds as antiviral for the treatment of COVID-19: A systematic review\",\"authors\":\"Shafa Shavira, S. Handayani, Fatmaria Fatmaria\",\"doi\":\"10.7324/japs.2023.133107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the outbreak of coronavirus disease 2019 (COVID-19), many studies have been conducted to develop definitive therapeutic agents for this viral disease. The in-silico method has become the best solution for the initial step in discovering potential antiviral compounds. Several phytocompounds from a medicinal plant, Andrographis paniculata , were reported to have activity inhibiting SARS-CoV-2 proteins. The present systematic review aims to determine the potency of A. paniculata compounds against COVID-19. We undertook a systematic search in two databases, PubMed and Google Scholar, and included original articles that applied in-silico methods for phytocompounds of A. paniculata in COVID-19. Twenty-nine original articles were included in the systematic review. We report that 50 of the 107 A. paniculata phytocompounds (46.73%) were against SARS-CoV-2. We found that five protein targets of SARS-CoV-2 are highly conserved structures mostly used in the articles, which are main protease, papain-like protease, RNA-dependent RNA polymerase\",\"PeriodicalId\":15126,\"journal\":{\"name\":\"journal of applied pharmaceutical science\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"journal of applied pharmaceutical science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7324/japs.2023.133107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"journal of applied pharmaceutical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7324/japs.2023.133107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1

摘要

自2019冠状病毒病(COVID-19)爆发以来,已经进行了许多研究,以开发针对这种病毒性疾病的最终治疗剂。在发现潜在抗病毒化合物的第一步,计算机方法已成为最佳解决方案。据报道,药用植物穿心莲(Andrographis paniculata)中的几种植物化合物具有抑制SARS-CoV-2蛋白的活性。本系统综述旨在确定荆芥化合物对COVID-19的效力。我们在PubMed和Google Scholar两个数据库中进行了系统检索,并纳入了应用计算机方法对COVID-19中的金银花植物化合物进行分析的原创文章。系统评价纳入了29篇原创文章。结果表明,107个金针藤化合物中有50个(46.73%)对SARS-CoV-2具有抑制作用。我们发现SARS-CoV-2的5个蛋白靶点是高度保守的结构,它们是主蛋白酶、木瓜蛋白酶、RNA依赖性RNA聚合酶
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The in-silico potential of Andrographis paniculata phytocompounds as antiviral for the treatment of COVID-19: A systematic review
Since the outbreak of coronavirus disease 2019 (COVID-19), many studies have been conducted to develop definitive therapeutic agents for this viral disease. The in-silico method has become the best solution for the initial step in discovering potential antiviral compounds. Several phytocompounds from a medicinal plant, Andrographis paniculata , were reported to have activity inhibiting SARS-CoV-2 proteins. The present systematic review aims to determine the potency of A. paniculata compounds against COVID-19. We undertook a systematic search in two databases, PubMed and Google Scholar, and included original articles that applied in-silico methods for phytocompounds of A. paniculata in COVID-19. Twenty-nine original articles were included in the systematic review. We report that 50 of the 107 A. paniculata phytocompounds (46.73%) were against SARS-CoV-2. We found that five protein targets of SARS-CoV-2 are highly conserved structures mostly used in the articles, which are main protease, papain-like protease, RNA-dependent RNA polymerase
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
journal of applied pharmaceutical science
journal of applied pharmaceutical science Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
2.20
自引率
0.00%
发文量
224
期刊介绍: Journal of Applied Pharmaceutical Science (JAPS) is a monthly, international, open access, journal dedicated to various disciplines of pharmaceutical and allied sciences. JAPS publishes manuscripts (Original research and review articles Mini-reviews, Short communication) on original work, either experimental or theoretical in the following areas; Pharmaceutics & Biopharmaceutics Novel & Targeted Drug Delivery Nanotechnology & Nanomedicine Pharmaceutical Chemistry Pharmacognosy & Ethnobotany Phytochemistry Pharmacology & Toxicology Pharmaceutical Biotechnology & Microbiology Pharmacy practice & Hospital Pharmacy Pharmacogenomics Pharmacovigilance Natural Product Research Drug Regulatory Affairs Case Study & Full clinical trials Biomaterials & Bioactive polymers Analytical Chemistry Physical Pharmacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信