基于记忆电阻的分数阶导数延迟BAM神经网络的同步

R. Chinnathambi, Fathalla A. Rihan, S. Lakshmanan, R. Rakkiyappan, M. Palanisamy
{"title":"基于记忆电阻的分数阶导数延迟BAM神经网络的同步","authors":"R. Chinnathambi, Fathalla A. Rihan, S. Lakshmanan, R. Rakkiyappan, M. Palanisamy","doi":"10.1002/cplx.21821","DOIUrl":null,"url":null,"abstract":"This article deals with the problem of synchronization of fractional-order memristor-based BAM neural networks (FMBNNs) with time-delay. We investigate the sufficient conditions for adaptive synchronization of FMBNNs with fractional-order 0 < α < 1. The analysis is based on suitable Lyapunov functional, differential inclusions theory, and master-slave synchronization setup. We extend the analysis to provide some useful criteria to ensure the finite-time synchronization of FMBNNs with fractional-order 1 < α < 2, using Mittag-Leffler functions, Laplace transform, and linear feedback control techniques. Numerical simulations with two numerical examples are given to validate our theoretical results. Presence of time-delay and fractional-order in the model shows interesting dynamics. © 2016 Wiley Periodicals, Inc. Complexity, 2016","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"11 1","pages":"412-426"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Synchronization of memristor-based delayed BAM neural networks with fractional-order derivatives\",\"authors\":\"R. Chinnathambi, Fathalla A. Rihan, S. Lakshmanan, R. Rakkiyappan, M. Palanisamy\",\"doi\":\"10.1002/cplx.21821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with the problem of synchronization of fractional-order memristor-based BAM neural networks (FMBNNs) with time-delay. We investigate the sufficient conditions for adaptive synchronization of FMBNNs with fractional-order 0 < α < 1. The analysis is based on suitable Lyapunov functional, differential inclusions theory, and master-slave synchronization setup. We extend the analysis to provide some useful criteria to ensure the finite-time synchronization of FMBNNs with fractional-order 1 < α < 2, using Mittag-Leffler functions, Laplace transform, and linear feedback control techniques. Numerical simulations with two numerical examples are given to validate our theoretical results. Presence of time-delay and fractional-order in the model shows interesting dynamics. © 2016 Wiley Periodicals, Inc. Complexity, 2016\",\"PeriodicalId\":72654,\"journal\":{\"name\":\"Complex psychiatry\",\"volume\":\"11 1\",\"pages\":\"412-426\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cplx.21821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cplx.21821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

研究了具有时滞的分数阶记忆器神经网络的同步问题。研究分数阶为0 < α < 1的fmbnn自适应同步的充分条件。分析基于合适的Lyapunov泛函、微分内含物理论和主从同步设置。利用Mittag-Leffler函数、拉普拉斯变换和线性反馈控制技术,对分数阶1 < α < 2的fmbnn的有限时间同步提供了一些有用的准则。通过两个算例进行了数值模拟,验证了理论结果。模型中时滞和分数阶的存在表现出有趣的动力学特性。©2016 Wiley期刊公司复杂性,2016
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization of memristor-based delayed BAM neural networks with fractional-order derivatives
This article deals with the problem of synchronization of fractional-order memristor-based BAM neural networks (FMBNNs) with time-delay. We investigate the sufficient conditions for adaptive synchronization of FMBNNs with fractional-order 0 < α < 1. The analysis is based on suitable Lyapunov functional, differential inclusions theory, and master-slave synchronization setup. We extend the analysis to provide some useful criteria to ensure the finite-time synchronization of FMBNNs with fractional-order 1 < α < 2, using Mittag-Leffler functions, Laplace transform, and linear feedback control techniques. Numerical simulations with two numerical examples are given to validate our theoretical results. Presence of time-delay and fractional-order in the model shows interesting dynamics. © 2016 Wiley Periodicals, Inc. Complexity, 2016
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信