R. Chinnathambi, Fathalla A. Rihan, S. Lakshmanan, R. Rakkiyappan, M. Palanisamy
{"title":"基于记忆电阻的分数阶导数延迟BAM神经网络的同步","authors":"R. Chinnathambi, Fathalla A. Rihan, S. Lakshmanan, R. Rakkiyappan, M. Palanisamy","doi":"10.1002/cplx.21821","DOIUrl":null,"url":null,"abstract":"This article deals with the problem of synchronization of fractional-order memristor-based BAM neural networks (FMBNNs) with time-delay. We investigate the sufficient conditions for adaptive synchronization of FMBNNs with fractional-order 0 < α < 1. The analysis is based on suitable Lyapunov functional, differential inclusions theory, and master-slave synchronization setup. We extend the analysis to provide some useful criteria to ensure the finite-time synchronization of FMBNNs with fractional-order 1 < α < 2, using Mittag-Leffler functions, Laplace transform, and linear feedback control techniques. Numerical simulations with two numerical examples are given to validate our theoretical results. Presence of time-delay and fractional-order in the model shows interesting dynamics. © 2016 Wiley Periodicals, Inc. Complexity, 2016","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"11 1","pages":"412-426"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Synchronization of memristor-based delayed BAM neural networks with fractional-order derivatives\",\"authors\":\"R. Chinnathambi, Fathalla A. Rihan, S. Lakshmanan, R. Rakkiyappan, M. Palanisamy\",\"doi\":\"10.1002/cplx.21821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with the problem of synchronization of fractional-order memristor-based BAM neural networks (FMBNNs) with time-delay. We investigate the sufficient conditions for adaptive synchronization of FMBNNs with fractional-order 0 < α < 1. The analysis is based on suitable Lyapunov functional, differential inclusions theory, and master-slave synchronization setup. We extend the analysis to provide some useful criteria to ensure the finite-time synchronization of FMBNNs with fractional-order 1 < α < 2, using Mittag-Leffler functions, Laplace transform, and linear feedback control techniques. Numerical simulations with two numerical examples are given to validate our theoretical results. Presence of time-delay and fractional-order in the model shows interesting dynamics. © 2016 Wiley Periodicals, Inc. Complexity, 2016\",\"PeriodicalId\":72654,\"journal\":{\"name\":\"Complex psychiatry\",\"volume\":\"11 1\",\"pages\":\"412-426\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cplx.21821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cplx.21821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30