求助PDF
{"title":"基于人工智能的智慧城市健康危机管理情感分析","authors":"Talha Saeed, Chu Kiong Loo, Muhammad Shahreeza Safiruz Kassim","doi":"10.32604/cmc.2022.021502","DOIUrl":null,"url":null,"abstract":"Smart city promotes the unification of conventional urban infrastructure and information technology (IT) to improve the quality of living and sustainable urban services in the city. To accomplish this, smart cities necessitate collaboration among the public as well as private sectors to install IT platforms to collect and examinemassive quantities of data. At the same time, it is essential to design effective artificial intelligence (AI) based tools to handle healthcare crisis situations in smart cities. To offer proficient services to people during healthcare crisis time, the authorities need to look closer towards them. Sentiment analysis (SA) in social networking can provide valuable information regarding public opinion towards government actions. With this motivation, this paper presents a new AI based SA tool for healthcare crisis management (AISA-HCM) in smart cities. The AISA-HCM technique aims to determine the emotions of the people during the healthcare crisis time, such as COVID-19. The proposed AISA-HCM technique involves distinct operations such as pre-processing, feature extraction, and classification. Besides, brain stormoptimization (BSO) with deep belief network (DBN), called BSODBN model is employed for feature extraction. Moreover, beetle antenna search with extreme learning machine (BAS-ELM) method was utilized for classifying the sentiments as to various classes. The use of BSO and BAS algorithms helps to effectively modify the parameters involved in the DBN andELMmodels respectively. The performance validation of the AISA-HCM technique takes place using Twitter data and the outcomes are examined with respect to various measures. The experimental outcomes highlighted the enhanced performance of the AISA-HCM technique over the recent state of art SA approaches with the maximum precision of 0.89, recall of 0.88, Fmeasure of 0.89, and accuracy of 0.94. © 2022 Tech Science Press. All rights reserved.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"29 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Artificial Intelligence Based Sentiment Analysis for Health Crisis Management in Smart Cities\",\"authors\":\"Talha Saeed, Chu Kiong Loo, Muhammad Shahreeza Safiruz Kassim\",\"doi\":\"10.32604/cmc.2022.021502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart city promotes the unification of conventional urban infrastructure and information technology (IT) to improve the quality of living and sustainable urban services in the city. To accomplish this, smart cities necessitate collaboration among the public as well as private sectors to install IT platforms to collect and examinemassive quantities of data. At the same time, it is essential to design effective artificial intelligence (AI) based tools to handle healthcare crisis situations in smart cities. To offer proficient services to people during healthcare crisis time, the authorities need to look closer towards them. Sentiment analysis (SA) in social networking can provide valuable information regarding public opinion towards government actions. With this motivation, this paper presents a new AI based SA tool for healthcare crisis management (AISA-HCM) in smart cities. The AISA-HCM technique aims to determine the emotions of the people during the healthcare crisis time, such as COVID-19. The proposed AISA-HCM technique involves distinct operations such as pre-processing, feature extraction, and classification. Besides, brain stormoptimization (BSO) with deep belief network (DBN), called BSODBN model is employed for feature extraction. Moreover, beetle antenna search with extreme learning machine (BAS-ELM) method was utilized for classifying the sentiments as to various classes. The use of BSO and BAS algorithms helps to effectively modify the parameters involved in the DBN andELMmodels respectively. The performance validation of the AISA-HCM technique takes place using Twitter data and the outcomes are examined with respect to various measures. The experimental outcomes highlighted the enhanced performance of the AISA-HCM technique over the recent state of art SA approaches with the maximum precision of 0.89, recall of 0.88, Fmeasure of 0.89, and accuracy of 0.94. © 2022 Tech Science Press. All rights reserved.\",\"PeriodicalId\":10440,\"journal\":{\"name\":\"Cmc-computers Materials & Continua\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cmc-computers Materials & Continua\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32604/cmc.2022.021502\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cmc-computers Materials & Continua","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/cmc.2022.021502","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 6
引用
批量引用
Artificial Intelligence Based Sentiment Analysis for Health Crisis Management in Smart Cities
Smart city promotes the unification of conventional urban infrastructure and information technology (IT) to improve the quality of living and sustainable urban services in the city. To accomplish this, smart cities necessitate collaboration among the public as well as private sectors to install IT platforms to collect and examinemassive quantities of data. At the same time, it is essential to design effective artificial intelligence (AI) based tools to handle healthcare crisis situations in smart cities. To offer proficient services to people during healthcare crisis time, the authorities need to look closer towards them. Sentiment analysis (SA) in social networking can provide valuable information regarding public opinion towards government actions. With this motivation, this paper presents a new AI based SA tool for healthcare crisis management (AISA-HCM) in smart cities. The AISA-HCM technique aims to determine the emotions of the people during the healthcare crisis time, such as COVID-19. The proposed AISA-HCM technique involves distinct operations such as pre-processing, feature extraction, and classification. Besides, brain stormoptimization (BSO) with deep belief network (DBN), called BSODBN model is employed for feature extraction. Moreover, beetle antenna search with extreme learning machine (BAS-ELM) method was utilized for classifying the sentiments as to various classes. The use of BSO and BAS algorithms helps to effectively modify the parameters involved in the DBN andELMmodels respectively. The performance validation of the AISA-HCM technique takes place using Twitter data and the outcomes are examined with respect to various measures. The experimental outcomes highlighted the enhanced performance of the AISA-HCM technique over the recent state of art SA approaches with the maximum precision of 0.89, recall of 0.88, Fmeasure of 0.89, and accuracy of 0.94. © 2022 Tech Science Press. All rights reserved.